0000000000459872

AUTHOR

M. Kl��ui

Monitoring surface resonances on Co2MnSi(100) by spin-resolved photoelectron spectroscopy

The magnitude of the spin polarization at the Fermi level of ferromagnetic materials at room temperature is a key property for spintronics. Investigating the Heusler compound Co$_2$MnSi a value of 93$\%$ for the spin polarization has been observed at room temperature, where the high spin polarization is related to a stable surface resonance in the majority band extending deep into the bulk. In particular, we identified in our spectroscopical analysis that this surface resonance is embedded in the bulk continuum with a strong coupling to the majority bulk states. The resonance behaves very bulk-like, as it extends over the first six atomic layers of the corresponding (001)-surface. Our study…

research product

Reliable magnetic domain wall propagation in cross structures for advanced multi-turn sensor devices

We develop and analyze an advanced concept for domain wall based sensing of rotations. Moving domain walls in n closed loops with n-1 intersecting convolutions by rotating fields, we can sense n rotations. By combining loops with coprime numbers of rotations, we create a sensor system allowing for the total counting of millions of turns of a rotating applied magnetic field. We analyze the operation of the sensor and identify the intersecting cross structures as the critical component for reliable operation. In particular depending on the orientation of the applied field angle with the magnetization in the branches of the cross, a domain wall is found to propagate in an unwanted direction yi…

research product

Role of phonon skew scattering in the spin Hall effect of platinum

We measure and analyze the effective spin Hall angle of platinum in the low residual resistivity regime by second harmonic measurements of the spin-orbit torques for a multilayer of Pt/Co/AlO$_x$. An angular dependent study of the torques allows us to extract the effective spin Hall angle responsible for the damping-like torque in the system. We observe a strikingly non-monotonic and reproducible temperature dependence of the torques. This behavior is compatible with recent theoretical predictions which include both intrinsic and extrinsic (impurities and phonons) contributions to the spin Hall effect at finite temperature.

research product