0000000000460037

AUTHOR

Monia D'amico

Presynaptic effects of anandamide and WIN55,212-2 on glutamatergic nerve endings isolated from rat hippocampus

We examined the effects of the endocannabinoide-anandamide (AEA), the synthetic cannabinoid, WIN55,212-2, and the active phorbol ester, 4-beta-phorbol 12-myristate 13-acetate (4-beta-PMA), on the release of [(3)H]d-Aspartate ([(3)H]d-ASP) from rat hippocampal synaptosomes. Release was evoked with three different stimuli: (1) KCl-induced membrane depolarization, which activates voltage-dependent Ca(2+) channels and causes limited neurotransmitter exocytosis, presumably from ready-releasable vesicles docked in the active zone; (2) exposure to the Ca(2+) ionophore-A23187, which causes more extensive transmitter release, presumably from intracellular reserve vesicles; and (3) K(+) channel block…

research product

Neurosteroid modulation of the presynaptic NMDA receptors regulating hippocampal noradrenaline release in normal rats and those exposed prenatally to diazepam

Abstract Prenatal exposure to diazepam (DZ), a positive allosteric modulator of the γ-aminobutyric acidA (GABAA) receptor complex, exerts profound effects that become more evident during puberty and in many cases are sex-specific, suggesting that such exposure interferes with the activity of steroid hormones. Apart from their well known effects on the genome, the reduced metabolites of many steroid hormones also interact directly with membrane receptors, including those for N-methyl- d -aspartate (NMDA). In this study, we compared the effects of several neurosteroids on NMDA receptors from normal rats and those exposed in utero to DZ (1.25 mg/kg per day) from the 14th through the 20th day o…

research product

Inhibition by Anandamide and Synthetic Cannabimimetics of the Release of [3H]d-Aspartate and [3H]GABA from Synaptosomes Isolated from the Rat Hippocampus

Cannabinoids (CB) can act as retrograde synaptic mediators of depolarization-induced suppression of inhibition or excitation in hippocampus. This mechanism may underlie the impairment of some cognitive processes produced by these compounds, including short-term memory formation in the hippocampus. In this study, we investigated several compounds known to interact with CB receptors, evaluating their effects on K +-evoked release of [ 3H]d-aspartate ([ 3H]d-ASP) and [ 3H]GABA from superfused synaptosomes isolated from the rat hippocampus. [ 3H]d-ASP and [ 3H]GABA release were inhibited to different degrees by the synthetic cannabinoids WIN 55,212-2; CP 55,940, and arachidonyl-2′- chloroethyla…

research product