Role of top and bottom interfaces of a Pt/Co/AlOx system in Dzyaloshinskii-Moriya interaction, interface perpendicular magnetic anisotropy, and magneto-optical Kerr effect
We investigate the role of top and bottom interfaces in inversion symmetry-breaking Pt/Co/AlOx systems by inserting ultra-thin Cu layers. Wedge-type ultrathin Cu layers (0-0.5 nm) are introduced between Pt/Co or Co/AlOx interfaces. Interface sensitive physical quantities such as the interfacial Dzyaloshinskii-Moriya interaction (iDMI) energy density, the interfacial perpendicular magnetic anisotropy (iPMA), and the magneto-optical Kerr effects (MOKE) are systematically measured as a function of Cu-insertion layer thickness. We find that the Cu-insertion layer in the bottom interface (Pt/Co) plays a more important role in iDMI, PMA, and MOKE. In contrast, the top interface (Co/AlOx) noticeab…
Electric-Field Control of Spin-Orbit Torques in Perpendicularly Magnetized W/CoFeB/MgO Films
Controlling magnetism by electric fields offers a highly attractive perspective for designing future generations of energy-efficient information technologies. Here, we demonstrate that the magnitude of current-induced spin-orbit torques in thin perpendicularly magnetized CoFeB films can be tuned and even increased by electric-field generated piezoelectric strain. Using theoretical calculations, we uncover that the subtle interplay of spin-orbit coupling, crystal symmetry, and orbital polarization is at the core of the observed strain dependence of spin-orbit torques. Our results open a path to integrating two energy efficient spin manipulation approaches, the electric-field-induced strain a…
Asymmetric hysteresis for probing Dzyalohsinskii-Moriya interaction
The interfacial Dzyaloshinskii-Moriya interaction (DMI) is intimately related to the prospect of superior domain-wall dynamics and the formation of magnetic skyrmions. Although some experimental efforts have been recently proposed to quantify these interactions and the underlying physics, it is still far from trivial to address the interfacial DMI. Inspired by the reported tilt of the magnetization of the side edge of a thin film structure, we here present a quasi-static, straightforward measurement tool. By using laterally asymmetric triangular-shaped microstructures, it is demonstrated that interfacial DMI combined with an in-plane magnetic field yields a unique and significant shift in m…
Chiral Magnetic Domain Wall and Skyrmion Memory Devices
In the chapter, we have reviewed the fundamental physics for designing magnetic domain wall memories, especially domain wall racetrack memories. An overview of how the racetrack has been functionally improved and the fundamental physics behind the operating mechanism has developed is shown. Material wise, the design of the racetrack has changed from using in-plane magnetic materials to out-of-plane magnetic materials. The process of changing the material design resulted in new physics such as the spin-orbit torques (SOTs) and the Dzyaloshinskii-Moriya interaction (DMI) which resulted in domain wall motion with higher efficiency and stability. The SOT is the main mechanism in moving the doma…
Enhancement of spin Hall conductivity in W-Ta alloy
Generating pure spin currents via the spin Hall effect in heavy metals has been an active topic of research in the last decade. In order to reduce the energy required to efficiently switch neighbouring ferromagnetic layers for applications, one should not only increase the charge- to-spin conversion efficiency but also decrease the longitudinal resistivity of the heavy metal. In this work, we investigate the spin Hall conductivity in W_{1-x}Ta_{x} / CoFeB / MgO (x = 0 - 0.2) using spin torque ferromagnetic resonance measurements. Alloying W with Ta leads to a factor of two change in both the damping-like effective spin Hall angle (from - 0.15 to - 0.3) and longitudinal resistivity (60 - 120…
Gilbert damping of CoFe-alloys
We report structural, magnetic and dynamic properties of polycrystalline Coalt;subagt;xalt;/subagt;Fealt;subagt;1-xalt;/subagt;-alloy films on Sapphire, Silicon and MgO substrates across the full composition range, by using a Vector Network Analyser ferromagnetic resonance measurement technique (VNA-FMR), Superconducting Quantum Interference Device magnetometry (SQUID) and X-Ray Diffraction (XRD). In the approximate vicinity of 28% Co, we observe a minimum of the damping parameter, associated with a reduction in the density of states to a minimum value at the Fermi energy level. For films on all substrates, we find magnetic damping of the order of 4-5⋅10alt;supagt;-3alt;/supagt;, showing th…
Ferromagnetic layer thickness dependence of the Dzyaloshinskii-Moriya interaction and spin-orbit torques in Pt\Co\AlOx
We report the thickness dependence of Dzyaloshinskii-Moriya interaction (DMI) and spin-orbit torques (SOTs) in Pt\Co(t)\AlOx, studied by current-induced domain wall (DW) motion and second-harmonic experiments. From the DW motion study, a monotonous decay of the effective DMI strength with an increasing Co thickness is observed, in agreement with a DMI originating at the Pt\Co interface. The study of the ferromagnetic thickness dependence of spin-orbit torques reveals a more complex behavior. The effective SOT-field driving the DW motion is found to initially increase and then saturate with an increasing ferromagnetic thickness, while the effective SOT-fields acting on a saturated magnetic s…