0000000000464587

AUTHOR

Andrea Rau

showing 3 related works from this author

Chicken adaptive response to low energy diet: main role of the hypothalamic lipid metabolism revealed by a phenotypic and multi-tissue transcriptomic…

2019

AbstractBackgroundProduction conditions of layer chicken can vary in terms of temperature or diet energy content compared to the controlled environment where pure-bred selection is undertaken. The aim of this study was to better understand the long-term effects of a 15%-energy depleted diet on egg-production, energy homeostasis and metabolism via a multi-tissue transcriptomic analysis. Study was designed to compare effects of the nutritional intervention in two layer chicken lines divergently selected for residual feed intake.ResultsChicken adapted to the diet in terms of production by significantly increasing their feed intake and decreasing their body weight and body fat composition, whil…

Adipose tissueadaptationEnergy homeostasisTranscriptome0302 clinical medicinehypothalamusBeta oxidation2. Zero hunger0303 health sciencesprise alimentaireEndocannabinoid systemAdaptation PhysiologicalCell biologyAlimentation et NutritionBody Composition[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]BiotechnologyResearch Articlelcsh:QH426-470FADS1FADS2lcsh:BiotechnologychickenpouletBiologyModels Biological03 medical and health sciencesQuantitative Trait Heritablelipidlcsh:TP248.13-248.65GeneticsAnimalsFood and Nutritionlipide030304 developmental biologyCaloric RestrictionNeurosciencesLipid metabolismLipid MetabolismDietlcsh:GeneticsGene Expression RegulationNeurons and Cognitionfeed intakeEnergy MetabolismChickenstranscriptome;lipid;feed intake;adaptation;hypothalamus;chickentranscriptome[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition030217 neurology & neurosurgery
researchProduct

In situ observations of CH2Cl2 and CHCl3 show efficient transport pathways for very short-lived species into the lower stratosphere via the Asian and…

2022

Efficient transport pathways for ozone-depleting very short-lived substances (VSLSs) from their source regions into the stratosphere are a matter of current scientific debate; however they have yet to be fully identified on an observational basis. Understanding the increasing impact of chlorine-containing VSLSs (Cl-VSLSs) on stratospheric ozone depletion is important in order to validate and improve model simulations and future predictions. We report on a transport study using airborne in situ measurements of the Cl-VSLSs dichloromethane (CH2Cl2) and trichloromethane (chloroform, CHCl3) to derive a detailed description of two transport pathways from (sub)tropical source regions into the ext…

ddc:550
researchProduct

In situ observations of CH<sub>2</sub>Cl<sub>2</sub> and CHCl<sub>3</sub…

2021

Abstract. Efficient transport pathways for ozone-depleting very short-lived substances (VSLSs) from their source regions into the stratosphere are a matter of current scientific debate; however they have yet to be fully identified on an observational basis. Understanding the increasing impact of chlorine-containing VSLSs (Cl-VSLSs) on stratospheric ozone depletion is important in order to validate and improve model simulations and future predictions. We report on a transport study using airborne in situ measurements of the Cl-VSLSs dichloromethane (CH2Cl2) and trichloromethane (chloroform, CHCl3) to derive a detailed description of two transport pathways from (sub)tropical source regions in…

TroposphereAtmospheric ScienceAnticycloneNorth American MonsoonMiddle latitudesNorthern HemisphereEnvironmental scienceMonsoonAtmospheric sciencesStratosphereOzone depletionAtmospheric Chemistry and Physics
researchProduct