Metalloproteases meprin α and meprin β are C- and N-procollagen proteinases important for collagen assembly and tensile strength.
Type I fibrillar collagen is the most abundant protein in the human body, crucial for the formation and strength of bones, skin, and tendon. Proteolytic enzymes are essential for initiation of the assembly of collagen fibrils by cleaving off the propeptides. We report that Mep1a −/− and Mep1b −/− mice revealed lower amounts of mature collagen I compared with WT mice and exhibited significantly reduced collagen deposition in skin, along with markedly decreased tissue tensile strength. While exploring the mechanism of this phenotype, we found that cleavage of full-length human procollagen I heterotrimers by either meprin α or meprin β led to the generation of mature collagen molecules that s…
Strong Cooperativity and Loose Geometry between CUB Domains Are the Basis for Procollagen C-Proteinase Enhancer Activity
Procollagen C-proteinase enhancers (PCPE-1 and -2) specifically activate bone morphogenetic protein-1 (BMP-1) and other members of the tolloid proteinase family during C-terminal processing of fibrillar collagen precursors. PCPEs consist of two CUB domains (CUB1 and CUB2) and one NTR domain separated by one short and one long linker. It was previously shown that PCPEs can strongly interact with procollagen molecules, but the exact mechanism by which they enhance BMP-1 activity remains largely unknown. Here, we used a series of deletion mutants of PCPE-1 and two chimeric constructs with repetitions of the same CUB domain to study the role of each domain and linker. Out of all the forms teste…
Sizzled Is Unique among Secreted Frizzled-related Proteins for Its Ability to Specifically Inhibit Bone Morphogenetic Protein-1 (BMP-1)/Tolloid-like Proteinases
BMP-1/tolloid-like proteinases (BTPs) are major enzymes involved in extracellular matrix assembly and activation of bioactive molecules, both growth factors and anti-angiogenic molecules. Although the control of BTP activity by several enhancing molecules is well established, the possibility that regulation also occurs through endogenous inhibitors is still debated. Secreted frizzled-related proteins (sFRPs) have been studied as possible candidates, with highly contradictory results, after the demonstration that sizzled, a sFRP found in Xenopus and zebrafish, was a potent inhibitor of Xenopus and zebrafish tolloid-like proteases. In this study, we demonstrate that mammalian sFRP-1, -2, and …
Procollagen C-proteinase Enhancer Stimulates Procollagen Processing by Binding to the C-propeptide Region Only*
Background: Procollagen C-proteinase enhancer-1 (PCPE-1) is an extracellular glycoprotein that increases activity of certain zinc metalloproteinases involved in tissue development and repair. Results: PCPE-1 binds uniquely to the C-propeptide region of the procollagen molecule. Conclusion: PCPE-1 enhances proteolysis by binding solely to the procollagen C-propeptides. Significance: These data may lead to future applications in the development of antifibrotic therapies.
Processing of procollagen III by meprins: new players in extracellular matrix assembly?
Meprins α and β, a subgroup of zinc metalloproteinases belonging to the astacin family, are known to cleave components of the extracellular matrix, either during physiological remodeling or in pathological situations. In this study we present a new role for meprins in matrix assembly, namely the proteolytic processing of procollagens. Both meprins α and β release the N- and C-propeptides from procollagen III, with such processing events being critical steps in collagen fibril formation. In addition, both meprins cleave procollagen III at exactly the same site as the procollagen C-proteinases, including bone morphogenetic protein-1 (BMP-1) and other members of the tolloid proteinase family. …
Role of the Netrin-like Domain of Procollagen C-Proteinase Enhancer-1 in the Control of Metalloproteinase Activity
The netrin-like (NTR) domain is a feature of several extracellular proteins, most notably the N-terminal domain of tissue inhibitors of metalloproteinases (TIMPs), where it functions as a strong inhibitor of matrix metalloproteinases and some other members of the metzincin superfamily. The presence of a C-terminal NTR domain in procollagen C-proteinase enhancers (PCPEs), proteins that stimulate the activity of astacin-like tolloid proteinases, raises the possibility that this might also have inhibitory activity. Here we show that both long and short forms of the PCPE-1 NTR domain, the latter beginning at the N-terminal cysteine known to be critical for TIMP activity, show no inhibition, at …