Free energy profiles for two ubiquitous damaging agents: methylation and hydroxylation of guanine in B-DNA
International audience; DNA methylation and hydroxylation are two ubiquitous reactions in DNA damage induction, yet insights are scarce concerning the free energy of activation within B-DNA. We resort to multiscale simulations to investigate the attack of a hydroxyl radical and of the primary diazonium onto a guanine embedded in a solvated dodecamer. Reaction free energy profiles characterize two strongly exergonic processes, yet allow unprecedented quantification of the barrier towards this damage reaction, not higher than 6 kcal mol−1 and sometimes inexistent, and of the exergonicities. In the case of the [G(C8)-OH]˙ intermediate, we challenge the functional dependence of such simulations…