0000000000470448
AUTHOR
A. Shichijo
Spectroscopy of A=9 hyperlithium with the (e,e′K+) reaction
Hypernuclear Spectroscopy at JLab Hall C
Abstract Since the 1st generation experiment, E89-009, which was successfully carried out as a pilot experiment of (e,e'K+) hypernuclear spectroscopy at JLab Hall C in 2000, precision hypernuclear spectroscopy by the (e,e'K+) reactions made considerable progress. It has evolved to the 2nd generation experiment, E01-011, in which a newly constructed high resolution kaon spectrometer (HKS) was installed and the “Tilt method” was adopted in order to suppress large electromagnetic background and to run with high luminosity. Preliminary high-resolution spectra of 7 Λ He and 28 Λ Al together with that of 12 Λ B that achieved resolution better than 500 keV(FWHM) were obtained. The third generation…
High resolution spectroscopic study ofBeΛ10
Spectroscopy of a Be-10(Lambda) hypernucleus was carried out at JLab Hall C using the (e, e' K+) reaction. A new magnetic spectrometer system (SPL+ HES+ HKS), specifically designed for high resolution hypernuclear spectroscopy, was used to obtain an energy spectrum with a resolution of similar to 0.78 MeV (FWHM). The well-calibrated spectrometer system of the present experiment using p(e, e' K+)Lambda, Sigma(0) reactions allowed us to determine the energy levels; and the binding energy of the ground-state peak (mixture of 1(-) and 2(-) states) was found to be B-Lambda = 8.55 +/- 0.07(stat.) +/- 0.11(sys.) MeV. The result indicates that the ground-state energy is shallower than that of an em…
Experiments with the High Resolution Kaon Spectrometer at JLab Hall C and the new spectroscopy ofΛ12Bhypernuclei
Since the pioneering experiment E89-009 studying hypernuclear spectroscopy using the (e, e’K+) reaction was completed, two additional experiments, E01-011 and E05-115, were performed at Jefferson Lab. These later experiments used a modified experimental design, the "tilt method", to dramatically suppress the large electromagnetic background, and allowed for a substantial increase in luminosity. Additionally, a new kaon spectrometer, HKS (E01-011), a new electron spectrometer, HES, and a new splitting magnet (E05-115) were added to produce new data sets of precision, high-resolution hypernuclear spectroscopy. All three experiments obtained a spectrum for 12B-Lambda, which is the most charact…
Spectroscopy of the neutron-rich hypernucleusHeΛ7from electron scattering
The missing mass spectroscopy of the HeΛ7 hypernucleus was performed using the Li7(e, e ′K+)HeΛ7 reaction at the Thomas Jefferson National Accelerator Facility Hall C. The Λ- binding energy of the ground-state (1/2+) was determined with a smaller error than that of the previous measurement, being BΛ=5.55±0.10stat.±0.11sys.MeV. The experiment also provided new insight into charge symmetry breaking in p-shell hypernuclear systems. Finally, a peak at BΛ=3.65±0.20stat. ±0.11sys.MeV was observed and assigned as a mixture of 3/2+ and 5/2+ states, confirming the "gluelike" behavior of Λ, which makes an unstable state in He6 stable against neutron emission.
Direct measurements of the lifetime of medium-heavy hypernuclei
Abstract The lifetime of a Λ particle embedded in a nucleus (hypernucleus) decreases from that of free Λ decay mainly due to the opening of the Λ N → N N weak decay channel. However, it is generally believed that the lifetime of a hypernucleus attains a constant value (saturation) for medium to heavy hypernuclear masses, yet this hypothesis has been difficult to verify. This paper presents a direct measurement of the lifetime of medium-heavy hypernuclei that were hyper-fragments produced by fission or break-up from heavy hypernuclei initially produced with a 2.34 GeV photon-beam incident on thin Fe, Cu, Ag, and Bi target foils. For each event, fragments were detected in coincident pairs by …
High Resolution Λ Hypernuclear Spectroscopy with Electron Beams
T. Gogami1 ∗, P. Achenbach2, A. Ahmidouch3, I. Albayrak4, D. Androic5, A. Asaturyan6, R. Asaturyan6, O. Ates4, P. Baturin7, R. Badui7, W. Boeglin7, J. Bono7, E. Brash8, P. Carter8, C. Chen4, A. Chiba1, E. Christy4, S. Danagoulian3, R. De Leo10, D. Doi1, M. Elaasar11, R. Ent9, Y. Fujii1, M. Fujita1, M. Furic5, M. Gabrielyan7, L. Gan12, F. Garibaldi13, D. Gaskell9, A. Gasparian3, O. Hashimoto1, T. Horn9, B. Hu14, Ed. V. Hungerford21, M. Jones9, H. Kanda1, M. Kaneta1, S. Kato19, M. Kawai1, D. Kawama1, H. Khanal7, M. Kohl4, A. Liyanage4, W. Luo14, K. Maeda1, A. Margaryan6, P. Markowitz7, T. Maruta1, A. Matsumura1, V. Maxwell7, A. Mkrtchyan6, H. Mkrtchyan6, S. Nagao1, S. N. Nakamura1, A. Narayan…