0000000000470477

AUTHOR

M. Axiotis

showing 8 related works from this author

β decay of the nuclei 60Ga (Tz=−1), 62Ga, and 70Br (Tz=0)

2003

Physics
researchProduct

Study of medium-spin states of neutron-rich 87, 89, 91Rb isotopes

2019

International audience; Excited states of the rubidium isotopes$_{37}^{87, 89, 91}$Rb have been studied at the INFN Legnaro National Laboratory. Measurements of the $\gamma$ -ray decay of fragments produced in binary grazing reactions resulting from the interaction of a beam of 530 MeV$^{96}$Zr ions with a$^{124}$Sn target have been complemented by studies of the $\gamma$ -ray decay of fission fragments produced in the interaction of a beam of 230 MeV$^{36}$S ions with a thick$^{176}$Yb target. The structure of the yrast states of$_{37}^{87, 89, 91}$Rb has been discussed within the context of spherical shell-model and cranked Nilsson-Strutinsky calculations.

PhysicsNuclear and High Energy PhysicsSpin states[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]010308 nuclear & particles physicsFissionYrastNuclear TheoryContext (language use)01 natural sciencesIsotopes of rubidiumNuclear physicsExcited state0103 physical sciencesnuclear structure ; Rb isotopesPhysics::Accelerator PhysicsNuclear fusionNeutronNuclear Experiment010306 general physicsydinfysiikka
researchProduct

Plunger Lifetime Measurements in 102Pd

2006

Recently, an intense experimental effort has been devoted to the search of empirical proofs of critical‐point symmetries in nuclear structure. These symmetries describe shape‐phase transitions and provide parameter‐free predictions (up to over‐all scale factors) for excitation spectra and B(E2) values. This contribution reports on recent plunger‐lifetime measurements ON 102Pd carried out at LNL, Legnaro, with the Cologne plunger apparatus coupled to the GASP spectrometer and using the 92Zr(13C,3n)102Pd reaction at 48 MeV. According to the results of our measurements, 102Pd is so far the best known paradigm of the E(5) critical‐point symmetry.

Nuclear reactionNuclear physicsPlungerSpectrometerChemistryIsotopes of palladiumNuclear structureIsotopes of zirconiumSymmetry (physics)ExcitationAIP Conference Proceedings
researchProduct

Isospin dependence of electromagnetic transition strengths among an isobaric triplet

2019

*Aydın, Sezgin ( Aksaray, Yazar )

PhysicsNuclear and High Energy Physics010308 nuclear & particles physicsNuclear Theory[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural scienceslcsh:QC1-999Subatomär fysikMatrix (mathematics)Isospin0103 physical sciencesQuadrupoleSubatomic PhysicsIsobaric processElectromagnetic Transition StrengthsAtomic physics010306 general physicsydinfysiikkaMultipletIsospin Dependencelcsh:Physics
researchProduct

High-spin structure of ^{95}Pd

2012

The level scheme of the neutron-deficient nucleus ${}^{95}$Pd has been studied with the ${}^{58}$Ni + ${}^{40}$Ca fusion-evaporation reaction at 135 MeV with the GASP $\ensuremath{\gamma}$-ray array, the ISIS silicon ball, and the N-ring neutron detector. Excited levels with spins at least up to $\frac{45}{2}\ensuremath{\hbar}$ are reported for both parities. The observed experimental data are compared to large-scale shell-model calculations.

PhysicsNuclear and High Energy PhysicsSiliconSpinsAstrophysics::High Energy Astrophysical PhenomenaNuclear TheorySHELL modelchemistry.chemical_elementSpin structurechemistryExcited stateNeutron detectionBall (mathematics)Atomic physicsNuclear Experiment
researchProduct

Spin distribution measurement for 64Ni + 100Mo at near and above barrier energies

2015

Spin distribution measurements were performed for the reaction 64 Ni + 100 Mo at three beam energies ranging from 230 to 260 MeV. Compound nucleus (CN) spin distributions were obtained channel selective for each evaporation residue populated by the de-excitation cascade. A comparison of the spin distribution at different beam energies indicates that its slope becomes steeper and steeper with increasing beam energy. This change in slope of the spin distribution is mainly due to the onset of fission competition with particle evaporation at higher beam energies.

PhysicsFissionPhysicsQC1-999fusion reactions ; spin distributionsEvaporation7. Clean energyDistribution (mathematics)CascadeParticlePhysics::Accelerator PhysicsCondensed Matter::Strongly Correlated ElectronsAtomic physicsBeam energyBeam (structure)Spin-½EPJ Web of Conferences
researchProduct

High-spin states in the neutron-rich A∼100 region

2009

Two experimental setups have been used to study excited states of neutron‐rich nuclei in the A∼100 region. Extended level schemes and lifetime measurements were obtained using deep‐inelastic and fusion‐fission reactions with the CLARA‐PRISMA spectrometer and the Ge‐array GASP respectively. Experimental information from GASP has been used to complement the CLARA‐PRISMA experiment. Time spectra have been used to measure the lifetimes of isomeric states. Preliminary results are presented for 89Rb.

Physicsγ-ray transitionsSpin statesSpectrometerAstrophysics::High Energy Astrophysical PhenomenaLifetimesPRISMA-CLARA spectrometerGASP arrayDeep inelastic scatteringSpectral lineNuclear physicsPhysics and Astronomy (all)Excited stateNuclear fusionNeutronGamma spectroscopyAtomic physicsγ-ray transitions; GASP array; Lifetimes; PRISMA-CLARA spectrometer; Physics and Astronomy (all)Nuclear ExperimentAIP Conference Proceedings
researchProduct

Oblate Collectivity in the Yrast Structure of 194Pt

2005

A deep inelastic reaction using a 460 MeV 82Se beam incident upon a thick 192Os target was performed at the Legnaro National Laboratory, Italy. The resulting γ-decays were measured using the GASP array. Results for 194Pt extend the known level scheme of the yrast structure from spin I = (12 ħ) to (20 ħ). The irregularities in the sequence of the new transition energies and total Routhian surface calculations show a breakdown in collectivity with an yrast oblate shape remaining to high spin. Rubio Barroso, Berta, Berta.Rubio@ific.uv.es

Incident:FÍSICA::Física atómica y nuclear [UNESCO]GASP:FÍSICA [UNESCO]UNESCO::FÍSICA::Física atómica y nuclearIrregularitiesLegnaro National LaboratoryUNESCO::FÍSICAγ-decaysDeep inelastic reactionDeep inelastic reaction ; Incident ; Legnaro National Laboratory ; γ-decays ; GASP ; Irregularities
researchProduct