0000000000470744

AUTHOR

A. Martínez Gavara

showing 2 related works from this author

A ‘TVD-like’ Scheme for Conservation Laws with Source Terms

2008

The theoretical foundations of high-resolution TVD schemes for homogeneous scalar conservation laws and linear systems of conservation laws have been firmly established through the work of Harten [5], Sweby [11], and Roe [9]. These TVD schemes seek to prevent an increase in the total variation of the numerical solution, and are successfully implemented in the form of flux-limiters or slope limiters for scalar conservation laws and systems. However, their application to conservation laws with source terms is still not fully developed. In this work we analyze the properties of a second order, flux-limited version of the Lax-Wendroff scheme preserving steady states [3]. Our technique is based …

Fully developedFlux limitingConservation lawHomogeneousTotal variation diminishingLinear systemScalar (mathematics)Applied mathematicsHigh-resolution schemeMathematics
researchProduct

A Continuous Approach to FETI-DP Mortar Methods: Application to Dirichlet and Stokes Problem

2013

In this contribution we extend the FETI-DP mortar method for elliptic problems introduced by Bernardi et al. [2] and Chacon Vera [3] to the case of the incompressible Stokes equations showing that the same results hold in the two dimensional setting. These ideas extend easily to three dimensional problems. Finally some numerical tests are shown as a conclusion. This contribution is a condensed version of a more detailed forthcoming paper. We use standard notation, see for instance [1].

symbols.namesakeCompressibilityStokes problemsymbolsApplied mathematicsNumerical testsMortarFETI-DPNotationMortar methodsDirichlet distributionMathematics
researchProduct