0000000000471037
AUTHOR
Yifeng Li
A new paradigm for pattern classification: Nearest Border Techniques
Published version of a chapter in the book: AI 2013: Advances in Artificial Intelligence. Also available from the publisher at: http://dx.doi.org/10.1007/978-3-319-03680-9_44 There are many paradigms for pattern classification. As opposed to these, this paper introduces a paradigm that has not been reported in the literature earlier, which we shall refer to as the Nearest Border (NB) paradigm. The philosophy for developing such a NB strategy is as follows: Given the training data set for each class, we shall first attempt to create borders for each individual class. After that, we advocate that testing is accomplished by assigning the test sample to the class whose border it lies closest to…
Pattern classification using a new border identification paradigm: The nearest border technique
Abstract There are many paradigms for pattern classification such as the optimal Bayesian, kernel-based methods, inter-class border identification schemes, nearest neighbor methods, nearest centroid methods, among others. As opposed to these, this paper pioneers a new paradigm, which we shall refer to as the nearest border (NB) paradigm. The philosophy for developing such a NB strategy is as follows: given the training data set for each class, we shall attempt to create borders for each individual class. However, unlike the traditional border identification (BI) methods, we do not undertake this by using inter-class criteria; rather, we attempt to obtain the border for a specific class in t…