0000000000471484

AUTHOR

Jyotirmoy Bhardwaj

0000-0002-2992-2856

Cyber-Physical Systems for Smart Water Networks: A Review

Author's accepted manuscript. There is a growing demand to equip Smart Water Networks (SWN) with advanced sensing and computation capabilities in order to detect anomalies and apply autonomous event-triggered control. Cyber-Physical Systems (CPSs) have emerged as an important research area capable of intelligently sensing the state of SWN and reacting autonomously in scenarios of unexpected crisis development. Through computational algorithms, CPSs can integrate physical components of SWN, such as sensors and actuators, and provide technological frameworks for data analytics, pertinent decision making, and control. The development of CPSs in SWN requires the collaboration of diverse scienti…

research product

Coastal Research Seen Through an Early Career Lens—A Perspective on Barriers to Interdisciplinarity in Norway

The value of interdisciplinarity for solving complex coastal problems is widely recognized. Many early career researchers (ECRs) therefore actively seek this type of collaboration through choice or necessity, for professional development or project funding. However, establishing and conducting interdisciplinary research collaborations as an ECR has many challenges. Here, we identify these challenges through the lens of ECRs working in different disciplines on a common ecosystem, the Norwegian Skagerrak coast. The most densely populated coastline in Norway, the Skagerrak coast, is experiencing a multitude of anthropogenic stressors including fishing, aquaculture, eutrophication, climate chan…

research product

Towards a cyber-physical era: soft computing framework based multi-sensor array for water quality monitoring

Abstract. New concepts and techniques are replacing traditional methods of water quality parameter measurement systems. This paper introduces a cyber-physical system (CPS) approach for water quality assessment in a distribution network. Cyber-physical systems with embedded sensors, processors and actuators can be designed to sense and interact with the water environment. The proposed CPS is comprised of sensing framework integrated with five different water quality parameter sensor nodes and soft computing framework for computational modelling. Soft computing framework utilizes the applications of Python for user interface and fuzzy sciences for decision making. Introduction of multiple sen…

research product

Data-Driven Pump Scheduling for Cost Minimization in Water Networks

Pumps consume a significant amount of energy in a water distribution network (WDN). With the emergence of dynamic energy cost, the pump scheduling as per user demand is a computationally challenging task. Computing the decision variables of pump scheduling relies over mixed integer optimization (MIO) formulations. However, MIO formulations are NP-hard in general and solving such problems is inefficient in terms of computation time and memory. Moreover, the computational complexity of solving such MIO formulations increases exponentially with the size of the WDN. As an alternative, we propose a data-driven approach to estimate the decision variables of pump scheduling using deep neural netwo…

research product

Real Time Assessment of Potable Water Quality in Distribution Network based on Low Cost Multi-Sensor Array

New concepts and techniques are replacing traditional methods of water quality parameters measurement systems. This paper proposed a new way of potable water quality assessment in distribution network using Multi Sensor Array (MSA). Extensive research suggests that following parameters i.e. pH, Dissolved Oxygen (D.O.), Conductivity, Oxygen Reduction Potential (ORP), Temperature and Salinity are most suitable to detect overall quality of potable water. Commonly MSA is not an integrated sensor array on some substrate, but rather comprises a set of individual sensors measuring simultaneously different water parameters all together. Based on research, a MSA has been developed followed by signal…

research product