0000000000471742

AUTHOR

Elisa Colombo

showing 3 related works from this author

Exploring by whole exome sequencing patients with initial diagnosis of Rubinstein-Taybi syndrome: the interconnections of epigenetic machinery disord…

2019

Rubinstein–Taybi syndrome (RSTS) is an autosomal-dominant neurodevelopmental disease affecting 1:125,000 newborns characterized by intellectual disability, growth retardation, facial dysmorphisms and skeletal abnormalities. RSTS is caused by mutations in genes encoding for writers of the epigenetic machinery: CREBBP (~ 60%) or its homologous EP300 (~ 10%). No causative mutation is identified in up to 30% of patients. We performed whole-exome sequencing (WES) on eight RSTS-like individuals who had normal high-resolution array CGH testing and were CREBBP- and EP300-mutation -negative, to identify the molecular cause. In four cases, we identified putatively causal variants in three genes (ASXL…

MaleGenetic Association StudieCompound heterozygosityWhole Exome SequencingArticleEpigenesis Genetic03 medical and health scienceswhole exome sequencing Rubinstein–Taybi syndrome epigenetic mutationsExome SequencingGeneticsmedicineHumansEpigeneticsEP300ChildGenetics (clinical)Exome sequencingGenetic Association Studies030304 developmental biologyGeneticsRubinstein-Taybi Syndrome0303 health sciencesComparative Genomic HybridizationbiologyRubinstein–Taybi syndrome030305 genetics & heredityInfant NewbornFaciesInfantmedicine.diseaseFacieCREB-Binding ProteinHuman geneticsRSTSKMT2APhenotypeChild PreschoolMutationbiology.proteinNeurodegenerative disordersFemaleHaploinsufficiencyE1A-Associated p300 ProteinHumanHuman genetics
researchProduct

Customised next-generation sequencing multigene panel to screen a large cohort of individuals with chromatin-related disorder

2020

BackgroundThe regulation of the chromatin state by epigenetic mechanisms plays a central role in gene expression, cell function, and maintenance of cell identity. Hereditary disorders of chromatin regulation are a group of conditions caused by abnormalities of the various components of the epigenetic machinery, namely writers, erasers, readers, and chromatin remodelers. Although neurological dysfunction is almost ubiquitous in these disorders, the constellation of additional features characterizing many of these genes and the emerging clinical overlap among them indicate the existence of a community of syndromes. The introduction of high-throughput next generation sequencing (NGS) methods f…

Adenosine TriphosphataseAdultMaleCCCTC-Binding FactorTranscription FactorDNA-Binding Proteinchromatin disorderComputational biologyBiologyDNA HelicaseDNA sequencingEpigenesis GeneticMendelian chromatin disordersLocus heterogeneityDe Lange SyndromeGeneticsmedicineCoffin-Lowry SyndromeHumansGenetic Predisposition to DiseaseEpigeneticsGenetic TestingChildGeneGenetics (clinical)Adenosine Triphosphatasesnext generation sequencingepigeneticsGenetic heterogeneityDNA HelicasesMendelian chromatin disorderHistone-Lysine N-Methyltransferasemedicine.diseaseChromatinChromatinDNA-Binding ProteinsMendelian chromatin disorders; epigenetics; next generation sequencingCohortMutationRelated disorderFemaleMyeloid-Lymphoid Leukemia ProteinepigeneticTranscription FactorsHuman
researchProduct

The K63 deubiquitinase CYLD modulates autism-like behaviors and hippocampal plasticity by regulating autophagy and mTOR signaling.

2021

Nondegradative ubiquitin chains attached to specific targets via Lysine 63 (K63) residues have emerged to play a fundamental role in synaptic function. The K63-specific deubiquitinase CYLD has been widely studied in immune cells and lately also in neurons. To better understand if CYLD plays a role in brain and synapse homeostasis, we analyzed the behavioral profile of CYLD-deficient mice. We found that the loss of CYLD results in major autism-like phenotypes including impaired social communication, increased repetitive behavior, and cognitive dysfunction. Furthermore, the absence of CYLD leads to a reduction in hippocampal network excitability, long-term potentiation, and pyramidal neuron s…

MaleAutism Spectrum DisorderNerve Tissue ProteinsHippocampal formationHippocampusDeubiquitinating enzymeSynapseMiceUbiquitinAutophagyAnimalsAutistic DisorderMechanistic target of rapamycinPI3K/AKT/mTOR pathwayNeuronsMultidisciplinarybiologyUbiquitinLysineTOR Serine-Threonine KinasesAutophagyMicrofilament ProteinsUbiquitinationLong-term potentiationBiological SciencesDeubiquitinating Enzyme CYLDMice Inbred C57BLSynapsesbiology.proteinFemaleNeuroscienceSignal TransductionProceedings of the National Academy of Sciences of the United States of America
researchProduct