0000000000477394
AUTHOR
E. Maurice
Search for theX(4140)state inB+→J/ψϕK+decays
We investigate the decay B+ -> J/psi phi K+ in a search for the X(4140) state, a narrow threshold resonance in the J/psi phi system. The data sample corresponds to an integrated luminosity of 10.4 fb(-1) of p (p) over bar collisions at root s = 1.96 TeV collected by the D0 experiment at the Fermilab Tevatron collider. We observe a mass peak with a statistical significance of 3.1 standard deviations and measure its invariant mass to be M = 4159.0 +/- 4.3(stat) +/- 6.6(syst) MeV and its width to be Gamma = 19.9 +/- 12.6(stat)(-8.0)(+3.0)(syst) MeV.
Observations of Bs0→ψ(2S)η and B(s)0→ψ(2S)π+π− decays
First observations of the $B^0_s \rightarrow \psi(2S) \eta$, $B^0 \rightarrow \psi(2S) \pi^+ \pi^-$ and $B^0_s \rightarrow \psi(2S) \pi^+ \pi^-$ decays are made using a dataset corresponding to an integrated luminosity of 1.0~$fb^{-1}$ collected by the LHCb experiment in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=7$ TeV. The ratios of the branching fractions of each of the $\psi(2S)$ modes with respect to the corresponding $J/\psi$ decays are \[ \frac{\mathcal{B}(B^0_s \rightarrow \psi(2S) \eta) }{\mathcal{B}(B^0_s \rightarrow J/\psi \eta)} =0.83\pm0.14\,(stat)\pm0.12\,(syst)\pm0.02\,(\mathcalB}), \] \[ \frac{\mathcal{B}(B^0 \rightarrow \psi(2S) \pi^+ \pi^-)}{\mathcal{…
Search for heavy neutrinos at the NA48/2 and NA62 experiments at CERN
© The Authors, published by EDP Sciences. The NA48/2 experiment at CERN has collected large samples of charged kaons decaying into a pion and two muons for the search of heavy nuetrinos. In addition, its successor NA62 has set new limits on the rate of charged kaon decay into a heavy neutral lepton (HNL) and a lepton, with = e, µ, using the data collected in 2007 and 2015. New limits on heavy neutrinos from kaon decays into pions, muons and positrons are presented in this report.
Precision measurement of D meson mass differences
Using three- and four-body decays of D mesons produced in semileptonic b-hadron decays, precision measurements of D meson mass differences are made together with a measurement of the D-0 mass. The measurements are based on a dataset corresponding to an integrated luminosity of 1.0 fb(-1) collected in pp collisions at 7 TeV. Using the decay D-0 -> K+K-K-pi(+), the D-0 mass is measured to be M(D-0) = 1864.75 +/- 0.15 (stat) +/- 0.11 (syst) MeV/c(2). The mass differences M(D+) - M(D-0) = 4.76 +/- 0.12 (stat) +/- 0.07 (syst) MeV/c(2), M(D-s(+)) - M(D+) = 98.68 +/- 0.03 (stat) +/- 0.04 (syst) MeV/c(2) are measured using the D-0 -> K+K-pi(+)pi(-) and D-(s)(+) -> K+K-pi(+) modes.
Updated determination of D0–D¯0 mixing and CP violation parameters with D0→K+π− decays
We report measurements of charm-mixing parameters based on the decay-time-dependent ratio of D0→K+π- to D0→K-π+ rates. The analysis uses a data sample of proton-proton collisions corresponding to an integrated luminosity of 5.0 fb-1 recorded by the LHCb experiment from 2011 through 2016. Assuming charge-parity (CP) symmetry, the mixing parameters are determined to be x′2=(3.9±2.7)×10-5, y′=(5.28±0.52)×10-3, and RD=(3.454±0.031)×10-3. Without this assumption, the measurement is performed separately for D0 and D¯0 mesons, yielding a direct CP-violating asymmetry AD=(-0.1±9.1)×10-3, and magnitude of the ratio of mixing parameters 1.00<|q/p|<1.35 at the 68.3% confidence level. All results incl…
Searches for lepton number violating $K^+$ decays
The NA62 experiment at CERN reports a search for the lepton number violating decays K+ -> pi(-)e(+)e(+) and K+ -> pi(-)mu(+)mu(+) using a data sample collected in 2017. No signals are observed, and upper limits on the branching fractions of these decays of 2.2 x 10(-10) and 4.2 x 10(-11) are obtained, respectively, at 90% confidence level. These upper limits improve on previously reported measurements by factors of 3 and 2, respectively.
Observation of charmless baryonic decays B(s)0→pp¯h+h′−
Decays of B0 and Bs0 mesons to the charmless baryonic final states pp¯h+h′-, where h and h′ each denote a kaon or a pion, are searched for using the LHCb detector. The analysis is based on a sample of proton-proton collision data collected at center-of-mass energies of 7 and 8 TeV, corresponding to an integrated luminosity of 3 fb-1. Four-body charmless baryonic Bs0 decays are observed for the first time. The decays Bs0→pp¯K+K-, Bs0→pp¯K±π∓, B0→pp¯K±π∓ and B0→pp¯π+π- are observed with a significance greater than 5 standard deviations; evidence at 4.1 standard deviations is found for the B0→pp¯K+K- decay and an upper limit is set on the branching fraction for Bs0→pp¯π+π-. Branching fraction…
Measurement of CP asymmetry in Bs0 → Ds ∓K± decays
Journal of high energy physics 2018(3), 59 (2018). doi:10.1007/JHEP03(2018)059
Search for heavy neutral lepton production in K+ decays to positrons
A search for heavy neutral lepton ($N$) production in $K^+\to e^+N$ decays using the data sample collected by the NA62 experiment at CERN in 2017--2018 is reported. Upper limits of the extended neutrino mixing matrix element $|U_{e4}|^2$ are established at the level of $10^{-9}$ over most of the accessible heavy neutral lepton mass range 144--462 MeV/$c^2$, with the assumption that the lifetime exceeds 50 ns. These limits improve significantly upon those of previous production and decay searches. The $|U_{e4}|^2$ range favoured by Big Bang Nucleosynthesis is excluded up to a mass of about 340 MeV/$c^2$.
Search for K+→ π+νν¯ at NA62
Flavour physics is one of the most powerful fields for the search of new physics beyond the Standard Model. The kaon sector with the rare decay K+ → π+νν̅ provides one of the cleanest and most promising channels. NA62, a fixed target experiment at the CERN SPS, aims to measure BR (K+ → π+νν̅) with 10% precision to test the Standard Model validity up to an energy scale of hundreds of TeV. NA62 had dedicated data taking for the K+ → π+νν̅ measurement in 2016 and 2017 and will continue in 2018. Here preliminary results on a fraction of 2016 dataset are presented. The analysis of the complete 2016 data sample is expected to achieve the SM sensitivity.
Differential branching fraction and angular analysis of the decay $B^{0} \to K^{*0} \mu^{+}\mu^{-}$
The angular distribution and differential branching fraction of the decay B-0 -> K*(0)mu(+)mu(-) are studied using a data sample, collected by the LHCb experiment in pp collisions at root s = 7 TeV, corresponding to an integrated luminosity of 1.0 fb(-1). Several angular observables are measured in bins of the dimuon invariant mass squared, q(2). A first measurement of the zero-crossing point of the forward-backward asymmetry of the dimuon system is also presented. The zero-crossing point is measured to be q(0)(2) = 4.9 +/- 0.9 GeV2/c(4), where the uncertainty is the sum of statistical and systematic uncertainties. The results are consistent with the Standard Model predictions.
Search for direct CP violation in D0→h−h+ modes using semileptonic B decays
A search for direct CP violation in D0 -> h- h+ (where h=K or pi) is presented using data corresponding to an integrated luminosity of 1.0 fb^-1 collected in 2011 by LHCb in pp collisions at a centre-of-mass energy of 7 TeV. The analysis uses D0 mesons produced in inclusive semileptonic b-hadron decays to the D0 mu X final state, where the charge of the accompanying muon is used to tag the flavour of the D0 meson. The difference in the CP-violating asymmetries between the two decay channels is measured to be Delta A_CP = A_CP(K-K+) - A_CP(pi-pi+) = (0.49 +- 0.30 (stat) +- 0.14 (syst)) % . This result does not confirm the evidence for direct CP violation in the charm sector reported in other…
Measurements of the Λb0→J/ψΛ decay amplitudes and the Λb0 polarisation in pp collisions at s=7 TeV
An angular analysis of Λ0b→J/ψΛ decays is performed using a data sample corresponding to 1.0 fb−1 collected in pp collisions at √s=7 TeV with the LHCb detector at the LHC. A parity violating asymmetry parameter characterising the Λ0b→J/ψΛ decay of 0.05±0.17±0.07 and a Λ0b transverse production polarisation of 0.06±0.07±0.02 are measured, where the first uncertainty is statistical and the second systematic.
Search for heavy neutral lepton production in K+ decays
A search for heavy neutral lepton production in $K^+$ decays using a data sample collected with a minimum bias trigger by the NA62 experiment at CERN in 2015 is reported. Upper limits at the $10^{-7}$ to $10^{-6}$ level are established on the elements of the extended neutrino mixing matrix $|U_{\ell 4}|^2$ ($\ell=e,\mu$) for heavy neutral lepton mass in the range $170-448~{\rm MeV}/c^2$. This improves on the results from previous production searches in $K^+$ decays, setting more stringent limits and extending the mass range.
Searches for violation of lepton flavour and baryon number in tau lepton decays at LHCb
Searches for the lepton flavour violating decay tau(-) -> mu(-)mu(+)mu(-) and the lepton flavour and baryon number violating decays tau(-) -> (p) over bar mu(+)mu(-) and tau(-) -> p mu(-)mu(-) have been carried out using proton-proton collision data, corresponding to an integrated luminosity of 1.0 fb(-1), taken by the LHCb experiment at root s = 7 TeV. No evidence has been found for any signal, and limits have been set at 90% confidence level on the branching fractions: B(tau(-) -> mu(-)mu(+)mu(-) mu(+)mu(-)) p mu(-)mu(-)) (p) over bar mu(+)mu(-) and tau(-) -> p mu(-)mu(-) decay modes represent the first direct experimental limits on these channels.
Search for Lepton Number and Flavor Violation in K+ and π0 Decays
Searches for the lepton number violating $K^{+} \rightarrow \pi^{-} \mu^{+} e^{+}$ decay and the lepton flavour violating $K^{+} \rightarrow \pi^{+} \mu^{-} e^{+}$ and $\pi^{0} \rightarrow \mu^{-} e^{+}$ decays are reported using data collected by the NA62 experiment at CERN in $2017$-$2018$. No evidence for these decays is found and upper limits of the branching ratios are obtained at 90% confidence level: $\mathcal{B}(K^{+}\rightarrow\pi^{-}\mu^{+}e^{+})<4.2\times 10^{-11}$, $\mathcal{B}(K^{+}\rightarrow\pi^{+}\mu^{-}e^{+})<6.6\times10^{-11}$ and $\mathcal{B}(\pi^{0}\rightarrow\mu^{-}e^{+})<3.2\times 10^{-10}$. These results improve by one order of magnitude over previous results for thes…
Determination of the $X(3872)$ meson quantum numbers
The quantum numbers of the X(3872) meson are determined to be J(PC) = 1(++) based on angular correlations in B+ -> X(3872)K+ decays, where X(3872) -> pi(+) pi(-) j/psi and J/psi -> pi(+) mu(-). The data correspond to 1.0 fb(-1) of pp collisions collected by the LHCb detector. The only alternative assignment allowed by previous measurements J(PC) = 2(-+) is rejected with a confidence level equivalent to more than 8 Gaussian standard deviations using a likelihood-ratio test in the full angular phase space. This result favors exotic explanations of the X(3872) state.
Observation of the suppressed ADS modes B±→[π±K∓π+π−]DK± and B±→[π±K∓π+π−]Dπ±
An analysis of and B-+/- -> DK +/- and B-+/- -> D pi(+/-) decays is presented where the D meson is reconstructed in the four-body final state K-+/-pi(-/+)pi(+)pi(-). Using LHCb data corresponding to an integrated luminosity of 1.0 fb(-1), first observations are made of the suppressed ADS modes B-+/- ->[pi K-+/-(-/+)pi(+)pi(-)](D)K-+/- and B +/- -> [pi K-+/-(-/+)pi(+)pi(-)](D)pi(+/-) with a significance of 5.1 sigma and greater than 10 sigma, respectively. Measurements of CP asymmetries and CP-conserving ratios of partial widths from this family of decays are also performed. The magnitude of the ratio between the suppressed and favoured B-+/- -> DK +/- amplitudes is determined to be r(B)(K) …
Measurement of the effective Bs0→K+K− lifetime
A precise determination of the effective $B_s^0 \rightarrow K^+ K^-$ lifetime can be used to constrain contributions from physics beyond the Standard Model in the $B_s^0$ meson system. Conventional approaches select $B$ meson decay products that are significantly displaced from the $B$ meson production vertex. As a consequence, $B$ mesons with low decay times are suppressed, introducing a bias to the decay time spectrum which must be corrected. This analysis uses a technique that explicitly avoids a lifetime bias by using a neural network based trigger and event selection. Using 1.0 fb$^{-1}$ of data recorded by the LHCb experiment, the effective $B_s^0 \rightarrow K^+ K^-$ lifetime is meas…