0000000000477972
AUTHOR
Ulrika Jakobsson
A new differentially pumped plunger device to measure excited-state lifetimes in proton emitting nuclei
Abstract A new plunger device has been designed and built to measure the lifetimes of unbound states in exotic nuclei beyond the proton drip-line. The device has been designed to work in both vacuum and dilute-gas environments made possible through the introduction of a low-voltage stepping motor. DPUNS will be used in conjunction with the gas-filled separator RITU and the vacuum separator MARA at the accelerator laboratory of the University of Jyvaskyla, Finland, to measure the lifetimes of excited states with low population cross-sections. This is achieved by eliminating the need for a carbon foil to isolate the helium gas of RITU from the beam line thus reducing the background from beam-…
Shape coexistence in Hg-178
Lifetime measurements of excited states in Hg-178 have been performed using the Rh-103(Kr-78, p2n) reaction at a beam energy of 354 MeV. The recoil-decay tagging (RDT) technique was applied to select the Hg-178 nuclei and associate the prompt gamma rays with the correlated characteristic ground-state alpha decay. Lifetimes of the four lowest yrast states of Hg-178 have been determined using the recoil distance Doppler-shift (RDDS) method. The experimental data are compared to theoretical predictions with focus on shape coexistence. The results confirm the shift of the deformed prolate structures to higher lying states but also indicate their increasing deformation with decreasing neutron nu…
Alpha-decay studies of the francium isotopes 198Fr and 199Fr nuclei
Very neutron deficient francium isotopes have been produced in fusion evaporation reactions using 60Ni ions on 141Pr targets. The gas-filled recoil separator RITU was employed to collect the fusion products and to separate them from the scattered beam. The activities were implanted into a position sensitive silicon detector after passing through a gas-counter system. The isotopes were identified using spatial and time correlations between the implants and the decays. Two α-particle activities, with Eα = 7613(15) keV and T1/2 = (15+12 −5 ) ms and Eα = 7684(15) keV and T1/2 = (16+13 −5 ) ms were identified in the new isotope 198Fr. In addition, the half-life and α-particle energy of 199Fr wer…
Stability of the heaviest elements: K isomer in No250
Decay spectroscopy of No250 has been performed using digital electronics and pulse-shape analysis of the fast nuclear decays for the first time. Previous studies of No250 reported two distinct fission decay lifetimes, related to the direct fission of the ground state and to the decay of an isomeric state but without the possibility to determine if the isomeric state decayed directly via fission or via internal electromagnetic transitions to the ground state. The data obtained in the current experiment allowed the puzzle to finally be resolved, attributing the shorter half-life of t1/2=3.8±0.3μs to the ground state and the longer half-life t1/2=34.9−3.2+3.9μs to the decay of an isomeric stat…
New developments on the recoil distance doppler-shift method
Absolute transition probabilities are fundamental observables for nuclear structure. The recoil-distance-Doppler-shift (RDDS) technique, also called plunger technique, is a well established tool for the determination of these important experimental quantities via the measurement of lifetimes of excited nuclear states. Nowadays nuclear structure investigations are concentrated on exotic nuclei which are often produced with extremely small cross sections or with very low beam intensities. In order to use the RDDS technique also for the investigation of very exotic nuclei this method has to be adapted to the specific needs of these special reactions. This article gives an overview on recent RD…
High-spin spectroscopy of 140Nd
The population of the high-spin states in 140Nd was investigated using the reaction 96Zr(48Ca,4n). The results from two experiments, one with the EUROBALL array and one with the JUROGAM II + RITU + GREAT setup employing the recoil decay tagging technique, have been combined to develop a very detailed level scheme for 140Nd. Twelve bands of quadrupole transitions and eleven bands of dipole transitions were identified and their connections to low-lying states were established. Calculations using the cranked Nilsson-Strutinsky and the tilted axis cranking models were used to interpret the observed structures. The overall good agreement between the experimental results and the calculations assu…
Deformation and mixing of coexisting shapes in neutron-deficient polonium isotopes
Coulomb-excitation experiments are performed with postaccelerated beams of neutron-deficient Po196,198,200,202 isotopes at the REX-ISOLDE facility. A set of matrix elements, coupling the low-lying states in these isotopes, is extracted. In the two heaviest isotopes, Po200,202, the transitional and diagonal matrix elements of the 2+1 state are determined. In Po196,198 multistep Coulomb excitation is observed, populating the 4+1,0+2, and 2+2 states. The experimental results are compared to the results from the measurement of mean-square charge radii in polonium isotopes, confirming the onset of deformation from Po196 onwards. Three model descriptions are used to compare to the data. Calculati…
Electromagnetic transition strengths in 109Te
Lifetime measurements have been made in the neutron-deficient nucleus 109Te using the coincident recoil distance Doppler-shift method. The experimental B(E2) values have been compared with state-of-the-art shellmodel calculations using the monopole-corrected realistic charge-dependent Bonn nucleon-nucleon potential. Lifetimes in the νh11/2 band are consistent with an interpretation based on the deformation driving properties of a single valence neutron outside of the even-even tellurium core and highlight the unexpected presence of collective behavior as the N = 50 shell closure is approached. Lifetime measurements for the low-lying positive-parity states also appear to correlate well with …
Collective excitations in the transitional nucleiRe163andRe165
Excited states in the neutron-deficient nuclei ${}_{75}^{163}{\mathrm{Re}}_{88}$ and ${}_{75}^{165}{\mathrm{Re}}_{90}$ were populated in the ${}^{106}{\mathrm{Cd}(}^{60}\mathrm{Ni},\phantom{\rule{0.16em}{0ex}}p2n\ensuremath{\gamma})$ and ${}^{92}{\mathrm{Mo}(}^{78}\mathrm{Kr}$, $3p2n\ensuremath{\gamma})$ fusion-evaporation reactions at bombarding energies of 270 and 380 MeV, respectively. \ensuremath{\gamma} rays were detected at the target position using the JUROGAM spectrometer while recoiling ions were separated in-flight by the RITU gas-filled recoil separator and implanted in the GREAT spectrometer. The energy level schemes for $^{163}\mathrm{Re}$ and $^{165}\mathrm{Re}$ were identifie…
Spectroscopy of the proton drip-line nucleus 203Fr
The nucleus ${}^{203}$Fr has been studied through $\ensuremath{\gamma}$-ray and electron spectroscopy, using the recoil-decay tagging technique. A 13/2${}^{+}$ state, with a half-life of 0.37(5) $\ensuremath{\mu}$s, has been observed in ${}^{203}$Fr. Both the $\ensuremath{\alpha}$-decay branch and the internal de-excitation of the 1/2${}^{+}$ isomer in ${}^{203}$Fr have been studied. Furthermore, the corresponding 1/2${}^{+}$ state, with a half-life of 0.31(8) s, has been found in ${}^{199}$At. In addition, transitions feeding the 9/2${}^{\ensuremath{-}}$ ground state of ${}^{203}$Fr have been identified. The observed level pattern suggests that the ground state is still spherical.
In-beam spectroscopy with intense ion beams: Evidence for a rotational structure in246Fm
The rotational structure of ${}^{246}$Fm has been investigated using in-beam $\ensuremath{\gamma}$-ray spectroscopic techniques. The experiment was performed using the JUROGAMII germanium detector array coupled to the gas-filled recoil ion transport unit (RITU) and the gamma recoil electron alpha tagging (GREAT) focal plane detection system. Nuclei of ${}^{246}$Fm were produced using a 186 MeV beam of ${}^{40}$Ar impinging on a ${}^{208}$Pb target. The JUROGAMII array was fully instrumented with Tracking Numerical Treatment 2 Dubna (TNT2D) digital acquisition cards. The use of digital electronics and a rotating target allowed for unprecedented beam intensities of up to 71 particle-nanoamper…
X(5) critical-point symmetries in 138Gd
International audience; The lifetimes of low-lying transitions in 138Gd have been measured using the recoil-distance Doppler-shift technique. The resultant reduced transition probabilities have been compared to X(5) critical-point calculations to assess the potential 'phase-transitional' behaviour of 138Gd. The X(5) symmetry describes the first order 'phase transition' between sphericity, U(5) and an axially deformed nuclear shape, SU(3). Although a high degree of correspondence is observed between the experimental and theoretical excitation energies, the large uncertainties of the experimental B(E2) values cannot preclude contributions from either vibrational or rotational modes of excitat…
Confirmation of the new isotope Pb178
The extremely neutron-deficient isotope $^{178}\mathrm{Pb}$ has been produced. The GREAT spectrometer at the focal plane position of the gas-filled separator RITU was used to study the $\ensuremath{\alpha}$ decay of $^{178}\mathrm{Pb}$ and its $\ensuremath{\alpha}$-decay chain through $\ensuremath{\alpha}\text{\ensuremath{-}}\ensuremath{\alpha}$ correlations. The $\ensuremath{\alpha}$ decay was measured to have an energy and half-life of ${E}_{\ensuremath{\alpha}}$= 7610(30) keV and ${t}_{1/2}=0.{21}_{\ensuremath{-}0.08}^{+0.21}$ ms, respectively. The half-life is consistent with recent theoretical calculations using the Coulomb and proximity potential model. The $\ensuremath{\alpha}$-decay…
Experimental study of isomeric intruder 12+ states in At197,203
A newly observed isomeric intruder ${\textonehalf{}}^{+}$ state $[{T}_{\textonehalf{}}=3.5(6)\phantom{\rule{0.16em}{0ex}}\mathrm{ms}]$ is identified in $^{203}\mathrm{At}$ using a gas-filled recoil separator and fusion-evaporation reactions. The isomer is depopulated through a cascade of $E3$ and mixed $M1/E2$ transitions to the ${9/2}^{\ensuremath{-}}$ ground state, and it is suggested to originate from the $\ensuremath{\pi}{({s}_{\textonehalf{}})}^{\ensuremath{-}1}$ configuration. In addition, the structures above the ${\textonehalf{}}^{+}$ state in $^{203}\mathrm{At}$ and $^{197}\mathrm{At}$ are studied using in-beam $\ensuremath{\gamma}$-ray spectroscopy, recoil-decay tagging, and recoi…
Recoil-decay tagging spectroscopy of74162W88
Excited states in the highly neutron-deficient nucleus W-162 have been investigated via the Mo-92(Kr-78, 2 alpha) W-162 reaction. Prompt gamma rays were detected by the JUROGAM II high-purity germa ...
First observation of excited states of173Hg
The neutron-deficient nucleus 173Hg has been studied following fusion-evaporation reactions. The observation of gamma rays decaying from excited states are reported for the first time and a tentative level scheme is proposed. The proposed level scheme is discussed within the context of the systematics of neighbouring neutron-deficient Hg nuclei. In addition to the gamma-ray spectroscopy, the alpha decay of this nucleus has been measured yielding superior precision to earlier measurements.
α -decay spectroscopy of the N=130 isotones Ra218 and Th220 : Mitigation of α -particle energy summing with implanted nuclei
© 2019 American Physical Society. An analysis technique has been developed in order to mitigate energy summing due to sequential short-lived α decays from nuclei implanted into a silicon detector. Using this technique, α-decay spectroscopy of the N=130 isotones Ra218 (Z=88) and Th220 (Z=90) has been performed. The energies of the α particles emitted in the Ra218→Rn214 and Th220→Ra216 ground-state-to-ground-state decays have been measured to be 8381(4) keV and 8818(13) keV, respectively. The half-lives of the ground states of Ra218 and Th220 have been measured to be 25.99(10) μs and 10.4(4) μs, respectively. The half-lives of the ground states of the α-decay daughters, Rn214 and Ra216, have …
Prompt gamma ray-spectroscopy of N = 50 fission fragments
Excited states in the nuclei 83 As and 84,86 Se have been studied via prompt -ray spectroscopy. The nuclei were produced by the proton-induced fission of a 238 U target, at the accelerator of the University of Jyvaskyla. The JUROGAM-II array was used to detect prompt -rays and a triple- coincidence analysis performed. A comparison of the N = 50 nuclei with shell-model calculations reproduces the low-lying states in 83 As and 84 Se well. The inclusion of particle-hole excitations is necessary to correctly describe the states above ∼ 3.5 MeV.
Reduced transition probabilities along the yrast line in W-166
WOS: 000406755100001
Spectroscopy of the proton drip-line nucleus 203Fr
The nucleus 203Fr has been studied through γ -ray and electron spectroscopy, using the recoil-decay tagging technique. A 13/2+ state, with a half-life of 0.37(5) μs, has been observed in 203Fr. Both the α-decay branch and the internal de-excitation of the 1/2+ isomer in 203Fr have been studied. Furthermore, the corresponding 1/2+ state, with a half-life of 0.31(8) s, has been found in 199At. In addition, transitions feeding the 9/2− ground state of 203Fr have been identified. The observed level pattern suggests that the ground state is still spherical. peerReviewed
Octupole correlations in the structure of 0$_2^+$ bands in the N=88 nuclei 150Sm and 152Gd
Knowledge of the exact microscopic structure of the 01 + ground state and first excited 02 + state in 150Sm is required to understand the branching of double β decay to these states from 150Nd. The detailed spectroscopy of 150Sm and 152Gd has been studied using (α,xn) reactions and the γ -ray arrays AFRODITE and JUROGAM II. Consistently strong E1 transitions are observed between the excited Kπ = 02 + bands and the lowest negative parity bands in both nuclei. These results are discussed in terms of the possible permanent octupole deformation in the first excited Kπ = 02 + band and also in terms of the “tidal wave” model of Frauendorf. peerReviewed
Anomalous transition strength in the proton-unbound nucleus I5653109
A lifetime measurement has been made for the first excited 11/2(+) state in the proton-unbound nucleus (109)(53)I56 using the recoil-distance Doppler-shift method in conjunction with recoil-proton ...
Confirmation of the new isotope 178Pb
The extremely neutron-deficient isotope 178Pb has been produced. The GREAT spectrometer at the focal plane position of the gas-filled separator RITU was used to study the α decay of 178Pb and its α-decay chain through α-α correlations. The α decay was measured to have an energy and half-life of Eα= 7610(30) keV and t1/2 = 0.21+0.21 −0.08 ms, respectively. The half-life is consistent with recent theoretical calculations using the Coulomb and proximity potential model. The α-decay reduced width and hindrance factor for 178Pb were deduced and correspond to an unhindered l = 0 transition. In addition, the mass excess of 178Pb and the α-decay Q value were calculated from the experimental results…
Lifetime measurement of the first excited 2+ state in 112Te
The lifetime of the 2+ → 0+ g.s. transition in the neutron-deficicient nucleus 112Te has been measured for the first time using the DPUNS plunger and the recoil distance Doppler shift technique. The deduced value for the reduced transition probability is B(E2 :0+ g.s. → 2+) = 0.46 ± 0.04 e2b2, indicating that there is no unexpected enhancement of the B(E2 :0+ g.s. → 2+) values in Te isotopes below the midshell. The result is compared to and discussed in the framework of large-scale shell-model calculations. peerReviewed
Identification of the Jπ = 1− state in 218Ra populated via α decay of 222Th
The α decay of 222Th populating the low-lying J π = 3− state, and also a proposed 1− state, in 218Ra has been observed. The observations suggest an excitation energy of 853 keV for the 1− state, which is 60 keV above the 3− state. The hindrance factors of these α decays give a possible boundary to the region of ground-state octupole deformation in the light-actinide nuclei. The relative positions of the J π = 1− and 3− states suggest they are produced by an octupole-vibrational mechanism, as opposed to α clustering or rotations of a reflection-asymmetric octupole-deformed shape. peerReviewed
Promptγ-ray spectroscopy of the neutron-rich124Cd
Prompt γ -ray spectroscopy of neutron-rich cadmium isotopes has been performed. The nuclei of interest have been populated via a 25-MeV, proton-induced fission of the 238 U thick target and prompt γ -rays measured using the multi-detector HPGe array JUROGAM II. New high-spin decays have been observed and placed in the level scheme using triple coincidence gates. The experimental results are compared to shell-model calculations and show good agreement.
Spectroscopy of 161Hf from low to high spin
Excited states in the neutron-deficient nucleus 161 72Hf89 have been populated using the 118Sn(48Ti,5n) 161Hf and 110Pd(56Fe,5n) 161Hf fusion-evaporation reactions at 240 and 270 MeV, respectively. The level scheme for 161Hf has been extended with the observation of new band structures and an I π = (13/2+) isomeric state with a half-life of 4.8(2) μs has been identified. The decay path from this isomer to the (7/2−) ground state is established. The yrast band, based on the (13/2+) isomeric state, is extended up to (73/2+) and side band structures are identified up to (69/2−) and (55/2−). Quasiparticle assignments for these rotational structures are made on the basis of their alignment prope…
A new recoil distance technique using low energy coulomb excitation in inverse kinematics
Abstract We report on the first experiment combining the Recoil Distance Doppler Shift technique and multistep Coulomb excitation in inverse kinematics at beam energies of 3–10 A MeV. The setup involves a standard plunger device equipped with a degrader foil instead of the normally used stopper foil. An array of particle detectors is positioned at forward angles to detect target-like recoil nuclei which are used as a trigger to discriminate against excitations in the degrader foil. The method has been successfully applied to measure lifetimes in 128Xe and is suited to be a useful tool for experiments with radioactive ion beams.
Excited states and reduced transition probabilities in Os168
The level scheme of the neutron-deficient nuclide 168Os has been extended and mean lifetimes of excited states have been measured by the recoil distance Doppler-shift method using the JUROGAM \gamma-ray spectrometer in conjunction with the IKP K\"oln plunger device. The 168Os \gamma rays were measured in delayed coincidence with recoiling fusion-evaporation residues detected at the focal plane of the RITU gas-filled separator. The ratio of reduced transition probabilities B(E2;4_1^+ \rightarrow 2_1^+)/B(E2;2_1^+ \rightarrow 0_1^+) is measured to be 0.34(18), which is very unusual for collective band structures and cannot be reproduced by IBM-2 model calculations based on the SkM* energy-den…
Experimental investigation of the 0⁺₂ band in ¹⁵⁴Sm as a β-vibrational band
First prompt in-beam gamma-ray spectroscopy of a superheavy element: the 256Rf
Using state-of-the-art γ-ray spectroscopic techniques, the first rotational band of a superheavy element, extending up to a spin of 20 ¯h, was discovered in the nucleus 256Rf. To perform such an experiment at the limits of the present instrumentation, several developments were needed. The most important of these developments was of an intense isotopically enriched 50Ti beam using the MIVOC method. The experimental set-up and subsequent analysis allowed the 256Rf ground-state band to be revealed. The rotational properties of the band are discussed and compared with neighboring transfermium nuclei through the study of their moments of inertia. These data suggest that there is no evidence of a…
Shape coexistence at the proton drip-line: First identification of excited states inPb180
Excited states in the extremely neutron-deficient nucleus {sup 180}Pb have been identified for the first time using the JUROGAM II array in conjunction with the RITU recoil separator at the Accelerator Laboratory of the University of Jyvaeskylae. This study lies at the limit of what is presently achievable with in-beam spectroscopy, with an estimated cross section of only 10 nb for the {sup 92}Mo({sup 90}Zr,2n){sup 180}Pb reaction. A continuation of the trend observed in {sup 182}Pb and {sup 184}Pb is seen, where the prolate minimum continues to rise beyond the N=104 midshell with respect to the spherical ground state. Beyond-mean-field calculations are in reasonable correspondence with the…
Octupole correlations in the structure of02+bands in theN=88nuclei150Sm and152Gd
Knowledge of the exact microscopic structure of the 0${}_{1}$${}^{+}$ ground state and first excited 0${}_{2}$${}^{+}$ state in ${}^{150}$Sm is required to understand the branching of double \ensuremath{\beta} decay to these states from ${}^{150}$Nd. The detailed spectroscopy of ${}^{150}$Sm and ${}^{152}$Gd has been studied using (\ensuremath{\alpha},xn) reactions and the \ensuremath{\gamma}-ray arrays AFRODITE and JUROGAM II. Consistently strong $E$1 transitions are observed between the excited ${K}^{\ensuremath{\pi}}$ $=$ 0${}_{2}$${}^{+}$ bands and the lowest negative parity bands in both nuclei. These results are discussed in terms of the possible permanent octupole deformation in the …
Fine structure in the α decay of 156Lu and 158Ta
Fine structure in the α decay of high-spin states in 156Lu and 158Ta has been identified by means of αγ - coincidence analysis. One new α decay from 156Lu and two from 158Ta were identified, one of which was found to populate a previously unknown state in 154Lu. The hindrance-factor systematics from all four odd-odd, N = 85 nuclei with known α-decaying, πh11/2 coupled states were reviewed and are discussed. These proved consistent with the previously assigned (πh11/2νh9/2 )10+ configuration of the α-decaying state in 156Lu, which differs from the (πh11/2ν f7/2 )9+ assignments in the other three nuclei. peerReviewed
Spectroscopy on the proton drip-line: Probing the structure dependence of isospin nonconserving interactions
J. Henderson et al. ; 4 pags. ; 4 figs. ; PACS number(s): 21.10.Re, 21.60.Cs, 23.20.Lv, 27.50.+e
First observation of excited states inHg17595
Excited states of the neutron-deficient nucleus Hg-175, populated using fusion-evaporation reactions, are reported for the first time. The spin and parity of the ground state has been determined to ...
Shape coexistence in odd-mass Au isotopes: Determination of the excitation energy of the lowest intruder state in ^{179}Au
Abstract Phenomenon of the shape coexistence has been investigated in 17979Au100. This very neutron-deficient isotope, 18 neutrons away from the stable gold isotope 19779Au118, was studied by a combination of α-decay and isomer-decay spectroscopy employing the ritu gas-filled separator and the great focal-plane spectrometer at the University of Jyvaskyla. A new isomer with t 1 / 2 = 328 ( 2 ) ns was observed and states associated with π d 3 / 2 − 1 , π s 1 / 2 − 1 , π f 7 / 2 + 1 and π h 9 / 2 + 1 structures were revealed. The implications of these results on the systematics of π h 9 / 2 + 1 and π f 7 / 2 + 1 intruder structures in the odd-mass gold isotopes are discussed. The minimum of th…
Recoil-decay tagging study of 205Fr
The nucleus 205Fr has been studied through γ -ray and electron spectroscopy using the recoil-decay tagging technique. The resulting level scheme presents a spherical structure built on the 9/2− ground state and a rotational structure on top of a short-lived isomer. The isomer, with a spin and parity of 13/2+ and a half-life of 80(20) ns, de-excites by an M2 transition directly to the 9/2− ground state. Another, longer-lived, isomer, with a half-life of 1.15(4) ms, has also been found and assigned a spin and parity of 1/2+. Transitions populating and de-exciting this isomer have been observed as well. peerReviewed
Prompt and delayed spectroscopy of 199At
The neutron-deficient nucleus At199 has been studied through γ-ray and electron spectroscopy, using the recoil-decay tagging technique. Two experiments were conducted, using a gas-filled recoil separator with a focal-plane spectrometer alone and together with a germanium-detector array at the target position. The resulting level scheme for At199 includes a new isomer with a half-life of 0.80(5) μs and a spin and parity of (29/2+). The 13/2+ isomer, which de-excites via an M2 transition to the 9/2− ground state, was measured to have a half-life of 70(20) ns. Our earlier version of the level scheme for At197 has been updated as well. peerReviewed
Excited states in Ra217 populated in the α decay of Th221
Fine structure in the α decay of Th90221, populating excited states in Ra88217, was studied using αγ-coincidence spectroscopy. Two α-decay branches from Th221 have been newly observed, with Eα(keV)[bα(%)]=7951(8)[0.14(3)] and 8247(3)[1.51(12)], together with three previously known branches. Also, two new states in Ra217 were identified at E = 177 and 227 keV. The ground-state configurations of the odd-A, N = 131 transitional isotones above Pb208 are interpreted from their α-decay fine structure systematics and considered in terms of predictions using spherical shell and reflection-asymmetric models.
Spectroscopy ofAt201including the observation of a shears band and the29/2+isomeric state
The excited states of $^{201}\mathrm{At}$ were studied and an isomeric $29/{2}^{+}$ state $[{T}_{\textonehalf{}}=3.39(9)\phantom{\rule{0.28em}{0ex}}\ensuremath{\mu}\mathrm{s}]$ was identified by using a fusion-evaporation reaction, a gas-filled recoil separator, and recoil gating techniques. The $29/{2}^{+}$ state is suggested to originate from the $\ensuremath{\pi}({h}_{9/2})\ensuremath{\bigotimes}|^{200}\mathrm{Po};{11}^{\ensuremath{-}}\ensuremath{\rangle}$ configuration, and it decays through the 269- and 339-keV $E2$- and $E3$-type transitions, respectively. Moreover, a cascade of magnetic dipole transitions that is suggested to originate from a shears band was observed by using recoil-…
Reassigning the shapes of the 0+ states in the 186Pb nucleus
Across the physics disciplines, the 186Pb nucleus is the only known system, where the two first excited states, together with the ground state, form a triplet of zero-spin states assigned with prolate, oblate and spherical shapes. Here we report on a precision measurement where the properties of collective transitions in 186Pb were determined in a simultaneous in-beam γ-ray and electron spectroscopy experiment employing the recoil-decay tagging technique. The feeding of the 0+2 state and the interband 2+2→2+1 transition have been observed. We also present direct measurement of the energies of the electric monopole transitions from the excited 0+ states to the 0+ ground state. In contrast to…
Direct observation of theBa114→Xe110→Te106→Sn102tripleα-decay chain using position and time correlations
The triple $\ensuremath{\alpha}$-decay chain $^{114}\mathrm{Ba}\ensuremath{\rightarrow}^{110}\mathrm{Xe}\ensuremath{\rightarrow}^{106}\mathrm{Te}\ensuremath{\rightarrow}^{102}\mathrm{Sn}$ has been directly observed for the first time, following the $^{58}\mathrm{Ni}(^{58}\mathrm{Ni},2n)$ reaction. Implantation of $^{114}\mathrm{Ba}$ nuclei into a double-sided silicon-strip detector has allowed their $\ensuremath{\alpha}$ decays to be correlated in position and time with the $\ensuremath{\alpha}$ decays of the daughter $(^{110}\mathrm{Xe})$ and granddaughter $(^{106}\mathrm{Te})$ nuclei. In total, 17 events have been assigned to the $^{114}\mathrm{Ba}\ensuremath{\rightarrow}^{110}\mathrm{Xe}…
Search for the terminating 27- state in 140Nd
In the search for the fully aligned 27− state in 140Nd predicted by cranked Nilsson-Strutinsky calculations, new close-to-spherical high-spin states have been discovered. Both the close-to-spherical and the triaxial calculated states are in good agreement with the experimental results, supporting the existence of shape coexistence up to very high spins. Shell-model calculations using a newly developed effective interaction for the 50 N ,Z 82 mass region are in good agreement with the observed spherical states. The comparison between the experimental and calculated level energies allowed the relative energy to be established between several proton and neutron orbitals at high energy and spin…
Coulomb excitation of re-accelerated 208Rn and 206Po beams
In the present study, B( E2; 2(+)-> 0(+) ) values have been measured in the Rn-208 and Po-206 nuclei through Coulomb excitation of re-accelerated radioactive beams in inverse kinematics at CERN-ISOLDE. The resulting B(E2; 2(+)-> 0(+)) in 208Rn is similar to 0.08 e(2)b(2). These nuclei lie in, or at the boundary of the region where seniority scheme should persist. However, contributions from collective excitations may be present when moving away from the N = 126 shell closure. To date, surprisingly little is known of the transition probabilities between the low-spin states in this region.
Decay of a 19(-) isomeric state in Lu-156
A multiparticle spin-trap isomeric state having a half-life of 179(4) ns and lying 2601 keV above the yrast 10(+) state in Lu-156 has been discovered. The Lu-156 nuclei were produced by bombarding isotopically enriched Cd-106 targets with beams of Ni-58 ions, separated in flight using the gas-filled separator RITU and their decays were measured using the GREAT spectrometer. Analysis of the main decay path that populates yrast states observed previously suggests a spin-parity assignment of 19(-) for the isomeric state, which is consistent with isomeric states identified in the N = 85 isotones. Comparison with other decay paths in Lu-156 indicates that the [pi h(11/)(2)(-1) circle times nu h(…
γ-Ray Spectroscopy at the Limits: First Observation of Rotational Bands inLr255
The rotational band structure of Lr-255 has been investigated using advanced in-beam gamma-ray spectroscopic techniques. To date, Lr-255 is the heaviest nucleus to be studied in this manner. One ro ...
Identification of a dipole band above the Iπ = 31/2- isomeric state in 189Pb
A dipole band of six transitions built upon a firmly established I π = 31/2− isomeric state has been identified in 189Pb using recoil-isomer tagging. This is the lightest odd-mass Pb nucleus in which a dipole band is known. The dipole nature of the new transitions has been confirmed through angular-intensity arguments. The evolution of the excitation energy and the aligned-angular momentum of the states in the new dipole band are compared with those of dipole bands in heavier, odd-mass lead isotopes. This comparison suggests that the new band in 189Pb is based upon a π[s−2 1/2h9/2i13/2]11− ⊗ ν[i −1 13/2+ ]13/2+ configuration. However, the increased aligned-angular momentum in 189Pb may sugg…
Lifetime measurements in 166Re : Collective versus magnetic rotation
WOS: 000371740600004
Quasiparticle alignments and α-decay fine structure of 175Pt
Excited states and decay properties of 175Pt have been investigated using the 92Mo(86Sr,2pn) fusion-evaporation reaction. The JUROGAM I γ -ray spectrometer and the GREAT spectrometer were used in conjunction with the gas-filled recoil separator RITU for the measurement of the radiation at the target and focal plane positions, respectively. Two new band structures, assigned to be based on the I π = (7/2 −) ground state in 175Pt, have been established and the known yrast band has been extended up to I π = (49/2 +). Rotational properties of the excited states in 175Pt have been investigated within the cranked shell-model formalism. The low-frequency changes in the alignments of the positive- a…
Collectivity ofPo196at low spin
Absolute electromagnetic transition probabilities in $^{196}\mathrm{Po}$ have been measured using the recoil distance Doppler-shift technique. The lifetimes of the three lowest yrast states in $^{196}\mathrm{Po}$ were extracted from singles \ensuremath{\gamma}-ray spectra by using the recoil-decay tagging method. In addition, configuration mixing calculations of angular momentum projected mean-field states have been carried out for $^{196}\mathrm{Po}$. The present study sheds light on the onset of collectivity and mixing of competing structures in neutron-deficient Po nuclei.
Quasiparticle alignments andα-decay fine structure of175Pt
Excited states and decay properties of ${}^{175}$Pt have been investigated using the ${}^{92}$Mo${(}^{86}\mathrm{Sr},2pn)$ fusion-evaporation reaction. The JUROGAM I $\ensuremath{\gamma}$-ray spectrometer and the GREAT spectrometer were used in conjunction with the gas-filled recoil separator RITU for the measurement of the radiation at the target and focal plane positions, respectively. Two new band structures, assigned to be based on the ${I}^{\ensuremath{\pi}}=({{}^{7}{/}_{2}}^{\ensuremath{-}})$ ground state in ${}^{175}$Pt, have been established and the known yrast band has been extended up to ${I}^{\ensuremath{\pi}}=({{}^{49}{/}_{2}}^{+})$. Rotational properties of the excited states i…
Direct observation of the Ba 114 → Xe 110 → Te 106 → Sn 102 triple α -decay chain using position and time correlations
The triple α-decay chain 114Ba → 110Xe → 106Te → 102Sn has been directly observed for the first time, following the 58Ni(58Ni ,2n) reaction. Implantation of 114Ba nuclei into a double-sided silicon-strip detector has allowed their α decays to be correlated in position and time with the α decays of the daughter (110Xe) and granddaughter (106Te) nuclei. In total, 17 events have been assigned to the 114Ba → 110Xe → 106Te → 102Sn triple α-decay chain. The energy of the 114Ba α decay has been measured to be Eα = 3480(20) keV, which is 70 keV higher than the previously measured value, and the half-life of 114Ba has been measured with improved accuracy, to be 380+190 −110 ms. A revised Q12C value …
A NEW PLUNGER DEVICE FOR INVESTIGATING THE EFFECTS OF DEFORMATION ON PROTON EMISSION RATES VIA LIFETIME MEASUREMENTS
A new plunger device has been designed and built to measure the lifetimes of unbound states in exotic nuclei beyond the proton drip-line. The device is designed to work in both vacuum and dilute-gas environments made possible through the introduction of a lowvoltage piezoelectric motors. The differential plunger for unbound nuclear states, DPUNS, will be used in conjunction with the gas-filled separator RITU and the vacuum separator MARA at the accelerator laboratory of the University of Jyvaskyla, Finland, to measure the lifetimes of excited states with low population cross-sections. This is achieved by eliminating the need for a carbon foil to isolate the helium gas of RITU from the beam …
Isomer-tagged differential-plunger measurements in proton-unbound 144Ho
The lifetime of an excited state above a weakly populated isomer in the proton-unbound odd-odd nucleus 144Ho has been measured using the recoil distance Doppler shift method. This measurement represents the first differential-plunger lifetime measurement to utilize recoil-isomer tagging. The first excited I[pi]=(10+) state above the two-quasiparticle [pi]h11/2[circle times operator][nu]h11/2(8+) isomer was determined to have a lifetime of [tau]=6(1)�ps. Potential energy surface calculations, based on the configuration-constrained blocking method, predict the isomeric state to have [gamma]-soft triaxial-nuclear shape with [gamma][approximate]24�. The lifetime of the (10+) state can be unders…
Spectroscopy of Kr70 and isospin symmetry in the T=1 fpg shell nuclei
The recoil-β tagging technique has been used in conjunction with the 40 Ca(32 S ,2n) reaction at a beam energy of 88 MeV to identify transitions associated with the decay of the 2 + and, tentatively, 4 + states in the nucleus 70 Kr. These data are used, along with previously published data, to examine the triplet energy differences (TED) for the mass 70 isobars. The experimental TED values are compared with shell model calculations, performed with the JUN45 interaction in the fpg model space, that include a J = 0 isospin nonconserving (INC) interaction with an isotensor strength of 100 keV. The agreement is found to be very good up to spin 4 and supports the expectation for analog states th…
Transition probability studies in 175Au
Transition probabilities have been measured between the low-lying yrast states in 175Au by employing the recoil distance Doppler-shift method combined with the selective recoil-decay tagging technique. Reduced transition probabilities and magnitudes of transition quadrupole moments have been extracted from measured lifetimes allowing dramatic changes in nuclear structure within a low excitation-energy range to probed. The transition quadrupole moment data are discussed in terms of available systematics as a function of atomic number and aligned angular momentum. peerReviewed
Decay of a 19− isomeric state in 156Lu
A multiparticle spin-trap isomeric state having a half-life of 179(4) ns and lying 2601 keV above the yrast 10 + state in 156 Lu has been discovered. The 156 Lu nuclei were produced by bombarding isotopically enriched 106 Cd targets with beams of 58 Ni ions, separated in flight using the gas-filled separator RITU and their decays were measured using the GREAT spectrometer. Analysis of the main decay path that populates yrast states observed previously suggests a spin-parity assignment of 19 − for the isomeric state, which is consistent with isomeric states identified in the N = 85 isotones. Comparison with other decay paths in 156 Lu indicates that the [ π h − 1 11 / 2 ⊗ ν h 9 / 2 ] 10 + st…
The isomeric structure of132Pr
The isomeric structure of the neutron deficient nucleus 132Pr, located in the rare-earth region of the nuclear chart, has been studied with the 98Mo(40Ar,5pn)132Pr reaction at beam energies of 150, 158 and 165 MeV. The experiment was performed at the University of Jyvaskyla, Finland where the 40Ar beam was accelerated onto the target by the K130 cyclotron. The JUROGAM II HPGe detector array was employed in conjunction with the RITU gas-filled recoil separator. The focal-plane chamber housed a multi wire proportional counter and a position-sensitive silicon strip detector used for the implantation and identification of recoiling nuclei. The recoil-isomer tagging technique was used to correla…
Characterizing the atomic mass surface beyond the proton drip line viaα-decay measurements of theπs1/2ground state of165Re and theπh11/2isomer in161Ta
The α-decay chains originating from the πs1/2 and πh11/2 states in 173Au have been investigated following fusion-evaporation reactions. Four generations of α radioactivities have been correlated with 173Aum leading to a measurement of the α decay of 161Tam. It has been found that the known α decay of 161Ta, which was previously associated with the decay of the ground state, is in fact the decay of an isomeric state. This work also reports on the first observation of prompt γ rays feeding the ground state of 173Au. This prompt γ radiation was used to aid the study of the α-decay chain originating from the πs1/2 state in 173Au. Three generations of α decays have been correlated with this stat…
In-beam study of 253No using the SAGE spectrometer
The heavy actinide nucleus 253No (Z = 102) was studied using the (S)ilicon (A)nd (Ge)rmanium (SAGE) spectrometer allowing simultaneous in-beam $\gamma$ -ray and conversion electron spectroscopy at the accelerator laboratory of the University of Jyvaskyla. Using the recoil-tagging technique, $\gamma$ -electron coincidences have allowed for the extension of the level scheme in the lower-spin region of the yrast band. In addition, internal conversion coefficient (ICC) measurements to establish the multipolarity of transitions have been performed. Measurement of the interband-intraband branching ratios supports the assignment of the Nilsson band-head configuration $9/2^{-}[734]$ assigned in pre…
Level structure above the 17+ isomeric state in 152 69 Tm83
Excited states above the 17+ isomeric state in the proton-rich nucleus 152Tm were established by employing the recoil-isomer tagging technique. Data were collected using the JUROGAM gamma-ray array and the GREAT spectrometer together with the recoil ion transport unit (RITU) gas-filled recoil separator and analyzed to identify the prompt and delayed γ decays from the levels in 152Tm. Shell-model calculations, either in a large valence space or in a reduced model space with five protons in the π0h11/2 orbital and one neutron in the ν1f7/2 orbital, agree with the observed energies of the yrast levels up to angular momentum J = 21. The observation of near degeneracies in the energy spectrum ca…
Lifetime measurements and shape coexistence inDy144
The known level scheme of {sup 144}Dy has been extended and lifetime measurements have been made with the recoil-distance Doppler-shift method. Reduced transition probabilities and deformations have been determined for four low-lying transitions. These states form part of the first observed band crossing, giving information on the change in nuclear deformation resulting from the rearrangement of h{sub 11/2} protons in the nucleus. Two bands built upon excited 10{sup +} states have been assigned pi(h{sub 11/2}){sup 2} prolate and nu(h{sub 11/2}){sup -2} oblate configurations with tau=12(2)ps and 0.01<tau < or approx. 16ns, respectively. These long lifetimes are reasoned to be a result of sha…
Transition probability studies in175Au
Transition probabilities have been measured between the low-lying yrast states in 175Au by employing the recoil distance Doppler-shift method combined with the selective recoil-decay tagging technique. Reduced transition probabilities and magnitudes of transition quadrupole moments have been extracted from measured lifetimes allowing dramatic changes in nuclear structure within a low excitation-energy range to probed. The transition quadrupole moment data are discussed in terms of available systematics as a function of atomic number and aligned angular momentum.
Prompt and delayed spectroscopy ofAt199
The neutron-deficient nucleus $^{199}\mathrm{At}$ has been studied through $\ensuremath{\gamma}$-ray and electron spectroscopy, using the recoil-decay tagging technique. Two experiments were conducted, using a gas-filled recoil separator with a focal-plane spectrometer alone and together with a germanium-detector array at the target position. The resulting level scheme for $^{199}\mathrm{At}$ includes a new isomer with a half-life of 0.80(5) $\ensuremath{\mu}$s and a spin and parity of ($29/{2}^{+}$). The $13/{2}^{+}$ isomer, which de-excites via an $M2$ transition to the $9/{2}^{\ensuremath{-}}$ ground state, was measured to have a half-life of 70(20) ns. Our earlier version of the level s…
Fine structure in the α decay of high-spin isomers in 155Lu and 156Hf
Fine structure in the α decay of high-spin isomers in 155Lu(25/2−) and 156Hf (8+) has been studied for the first time using αγ -coincidence analysis. Three new α decays from 155Lu(25/2−) and two from 156Hf (8+) have been identified, populating seniority s > 1 states in the N = 82 nuclei 151Tm and 152Yb, respectively. The reduced hindrance factors of the α decays support the previous configuration assignments of the populated states. This is the first observation of states with excitation energy greater than 1.5 MeV being populated following α decay in nuclei outside of the 208Pb region. peerReviewed
Enhancing the sensitivity of recoil-beta tagging
Tagging with β-particles at the focal plane of a recoil separator has been shown to be an effective technique for the study of exotic proton-rich nuclei. This article describes three new pieces of apparatus used to greatly improve the sensitivity of the recoil-beta tagging technique. These include a highly-pixelated double-sided silicon strip detector, a plastic phoswich detector for discriminating high-energy β-particles, and a charged-particle veto box. The performance of these new detectors is described and characterised, and the resulting improvements are discussed.
Detailed spectroscopy of Bi195
An experiment focused on the study of shape coexistence and new high-spin structures in $^{195}\mathrm{Bi}$ has been performed. The nucleus is in a transitional region of the bismuth isotope chain. A large number of new states have been found, resulting in a significant extension of the previously known level scheme. Several new collective structures have been identified. A strongly coupled rotational band built upon the $13/{2}^{+}$ isomeric state was extended up to ${I}^{\ensuremath{\pi}}=(49/{2}^{+})$ and an energy of 5706 keV. The ${I}^{\ensuremath{\pi}}=31/{2}^{+}$ member of the $\ensuremath{\pi}{i}_{13/2}$ band was also found to feed a new long-lived isomeric state with an excitation …
Single-particle and collective excitations in the transitional nucleus 166Os
The mean lifetimes of the lowest energy 2(+), 8(+) and 9(-) states in Os-166 have been measured using the recoil distance Doppler-shift method in conjunction with a selective recoil-decay tagging t ...
Excited states and reduced transition probabilities in Os 168
The level scheme of the neutron-deficient nuclide 168Os has been extended and mean lifetimes of excited states have been measured by the recoil distance Doppler-shift method using the JUROGAM γ -ray spectrometer in conjunction with the IKP Koln plunger device. The ¨ 168Os γ rays were measured in delayed coincidence with recoiling fusion-evaporation residues detected at the focal plane of the RITU gas-filled separator. The ratio of reduced transition probabilities B(E2; 4+ 1 → 2+ 1 )/B(E2; 2+ 1 → 0+ 1 ) is measured to be 0.34(18), which is very unusual for collective band structures and cannot be reproduced by interacting boson model (IBM-2) calculations based on the SkM* energy-density func…
Decay of a 19− isomeric state in Lu156
A multiparticle spin-trap isomeric state having a half-life of 179(4) ns and lying 2601 keV above the yrast 10(+) state in Lu-156 has been discovered. The Lu-156 nuclei were produced by bombarding ...
First prompt in-beam γ-ray spectroscopy of a superheavy element: the256Rf
Using state-of-the-art γ-ray spectroscopic techniques, the first rotational band of a superheavy element, extending up to a spin of 20 , was discovered in the nucleus 256Rf. To perform such an experiment at the limits of the present instrumentation, several developments were needed. The most important of these developments was of an intense isotopically enriched 50Ti beam using the MIVOC method. The experimental set-up and subsequent analysis allowed the 256Rf ground-state band to be revealed. The rotational properties of the band are discussed and compared with neighboring transfermium nuclei through the study of their moments of inertia. These data suggest that there is no evidence of a s…
Lifetime measurements probing triple shape coexistence in ^{175}Au
Lifetimes of the low-lying excited states in the very neutron-deficient nucleus ${}^{175}$Au have been measured by the recoil-distance Doppler-shift method using $\ensuremath{\gamma}$-ray spectra obtained with the recoil-decay tagging technique. Transition quadrupole moments and reduced transition probabilities extracted for this odd-$Z$ nucleus indicate the existence of three different shapes and the competition between collective and noncollective structures.
α-Decay branching ratios measured by γ-ray tagging
Abstract The nuclides 168–170Pt were produced by bombarding isotopically enriched 92,94Mo targets with 336, 348 MeV 78Kr ions. Prompt γ rays were detected at the target position and provided a selection criterion for the 168–170Pt nuclei. This technique enables the problem of the background from higher-energy α decays in the spectrum to be circumvented. The Pt nuclei were separated in flight using the gas-filled separator RITU and implanted into the GREAT spectrometer, which was used to study subsequent α decays. The α -decay branching ratios of 164–166Os were deduced from the fraction of selected 168–170Pt nuclei correlated with α decays of 164–166Os. The resulting branching ratios agree w…
Single-particle and collective excitations in the transitional nucleus 166Os
The mean lifetimes of the lowest energy 2+, 8+ and 9− states in 166Os have been measured using the recoil distance Doppler-shift method in conjunction with a selective recoil-decay tagging technique. These measurements extend studies into the most neutron-deficient mass region accessible to current experimental methods. The B(E2; 2+ → 0+) = 7(2) W.u. extracted from these measurements is markedly lower than those observed in the heavier even-mass Os isotopes. The 8+ and 9− states yield reduced transition probabilities that are consistent with single-particle transitions. While these values may indicate a departure from collective structure, the level scheme and the underlying nuclear configu…
Lifetime measurement of the first excited2+state inTe112
The lifetime of the 2(+) --> 0(g.s.)(+) transition in the neutron-deficicient nucleus Te-112 has been measured for the first time using the DPUNS plunger and the recoil distance Doppler shift te ...
α decay of the πh11/2 isomer in Ir164
The α -decay branch of the πh 11 / 2 isomer in 164 Ir has been identified using the GREAT spectrometer. The 164 Ir nuclei were produced using the 92 Mo( 78 Kr ,p 5 n ) 164 Ir reaction and separated in flight using the recoil ion transport unit (RITU) gas-filled separator. The measured α -decay energy of 6880 ± 10 keV allowed the excitation of the πh 11 / 2 state in 160 Re to be deduced as 166 ± 14 keV. The half-life of 164 Ir was measured with improved precision to be 70 ± 10 μ sandan α -decay branching ratio of 4 ± 2% was determined. Improved half-life and branching ratio measurements were also obtained for 165 Ir, but no evidence was found for the ground-state decays of either 164 Ir or 1…
Proton emission from an oblate nucleus 151Lu
Abstract Excited states in the proton-unbound nucleus 151Lu have been established using γ-ray coincidence techniques. The lifetime of the first excited state above the proton-emitting ground state has been measured using the recoil-distance Doppler-shift method combined with recoil-decay tagging. The experimental level scheme and extracted lifetime have been compared with state-of-the-art theoretical calculations based upon a non-adiabatic deformed Woods–Saxon potential. This comparison suggests that the proton-emitting ground state in 151Lu is mildly oblate with a deformation β = − 0.11 − 0.05 + 0.02 and represents the best evidence to date for proton emission from an oblate nucleus.
Excited states in the proton-unbound nuclide Ta-158
Excited states in the neutron-deficient odd-odd proton-unbound nuclide $^{158}\mathrm{Ta}$ have been investigated in two separate experiments. In the first experiment, $^{166}\mathrm{Ir}$ nuclei were produced in the reactions of 380 MeV $^{78}\mathrm{Kr}$ ions with an isotopically enriched $^{92}\mathrm{Mo}$ target. The $\ensuremath{\alpha}$-decay chain of the ${9}^{+}$ state in $^{166}\mathrm{Ir}$ was analyzed. Fine structure in the $\ensuremath{\alpha}$ decay of the ${9}^{+}$ state in $^{162}\mathrm{Re}$ established a 66 keV difference in excitation energy between the lowest-lying ${9}^{+}$ and ${10}^{+}$ states in $^{158}\mathrm{Ta}$. Higher-lying states in $^{158}\mathrm{Ta}$ were popul…
Decay spectroscopy of 179 82 Pb 97 and evidence for a 9/2− intruder state in 179 81 Tl 98
The very neutron-deficient isobars 179Pb and 179Tl have been produced using the fusion-evaporation reactions 104Pd(78Kr,xpyn), where x≤1 and y≥2. The gas-filled separator RITU was employed to transport and separate the recoiling nuclei of interest from the scattered beam and unwanted products. The GREAT spectrometer was used to study the decay properties through α−α and α−γ correlations, which has allowed the ground state of 179Pb to be assigned as Iπ=9/2−. The decay of 179Pb was measured to have an α-particle energy and half-life of Eα=7348(5)keV and t1/2=2.7(2) ms, respectively. A search for a νi13/2 state in 179Pb was performed, but only a limit of excitation energy and half-life was obt…
Recoil-decay tagging spectroscopy of 162 74 W 88
Excited states in the highly neutron-deficient nucleus 162W have been investigated via the 92Mo(78Kr, 2α) 162W reaction. Prompt γ rays were detected by the JUROGAM II high-purity germanium detector array and the recoiling fusion-evaporation products were separated by the recoil ion transport unit (RITU) gas-filled recoil separator and identified with the gamma recoil electron alpha tagging (GREAT) spectrometer at the focal plane of RITU. γ rays from 162W were identified uniquely using mother-daughter and mother-daughter-granddaughter α-decay correlations. The observation of a rotational-like ground-state band is interpreted within the framework of total Routhian surface (TRS) calculations, …
Decay spectroscopy of Pb97182179 and evidence for a 9/2− intruder state in Tl98181179
The very neutron-deficient isobars Pb-179 and Tl-179 have been produced using the fusion-evaporation reactions Pd-104(Kr-78,xpyn), where x = 2. The gas-filled separator RITU was employed to transpo ...
Spectroscopy of193Bi
An experiment aiming to study the shape coexistence in 193Bi has been performed at the Accelerator laboratory of the University of Jyväskylä, Finland (JYFL). Many new states have been found, hugely extending the previously known level scheme of 193Bi. The Iπ=292+${I^\pi } = {{{29} \over 2}^ + }$ member of the πi13/2 band de-excites also to the previously, only tentatively placed long-lived isomeric state. This link determines the energy of the isomeric state to be 2260(1) keV and suggests a spin and parity of (272+)$\left( {{{{{27} \over 2}}^ + }} \right)$. The half-life of the isomeric state was measured to be 84.4(6) µs. A level structure on top of this isomeric state was constructed. How…
Pairing-quadrupole interplay in the neutron-deficient tin nuclei: First lifetime measurements of low-lying states in 106,108Sn
The lifetimes of the low-lying excited states 2(+) and 4(+) have been directly measured in the neutron-deficient Sn-106,Sn-108 isotopes. the nuclei were populated via a deep-inelastic reaction and the lifetime measurement was performed employing a differential plunger device. the emitted gamma rays were detected by the AGATA array, while the reaction products were uniquely identified by the VAMOS++ magnetic spectrometer. Large-Scale Shell-Model calculations with realistic forces indicate that, independently of the pairing content of the interaction, the quadrupole force is dominant in the B(E2; 2(1)(+) -> 0(g.s)(+)) values and it describes well the experimental pattern for Sn104-114 ; the B…
α-decay studies of the francium isotopes198Fr and199Fr
Very neutron deficient francium isotopes have been produced in fusion evaporation reactions using ${}^{60}$Ni ions on ${}^{141}$Pr targets. The gas-filled recoil separator RITU was employed to collect the fusion products and to separate them from the scattered beam. The activities were implanted into a position sensitive silicon detector after passing through a gas-counter system. The isotopes were identified using spatial and time correlations between the implants and the decays. Two $\ensuremath{\alpha}$-particle activities, with ${E}_{\ensuremath{\alpha}}=7613(15)$ keV and ${T}_{1/2}$ $=$ (${15}_{\ensuremath{-}5}^{+12}$) ms and ${E}_{\ensuremath{\alpha}}=7684(15)$ keV and ${T}_{1/2}$ $=$…
γ-ray and decay spectroscopy of194,195,196At
Excited states of ${}^{195}$At have been studied by means of in-beam $\ensuremath{\gamma}$-ray spectroscopy and the recoil-decay tagging technique. A strongly coupled rotational band feeding the $\ensuremath{\alpha}$-decaying $7/{2}^{\ensuremath{-}}$ state via unobserved transitions was identified. This band is presumably built on the oblate proton ${I}^{\ensuremath{\pi}}=13/{2}^{+}$ state. Confirming earlier measurements, $\ensuremath{\alpha}$ decays from the $1/{2}^{+}$ and $7/{2}^{\ensuremath{-}}$ states were observed. Additionally, an $E3$ branch competing with the $\ensuremath{\alpha}$ decay of the $7/{2}^{\ensuremath{-}}$ state was inferred. Also $\ensuremath{\alpha}$ decays of the od…
Excited states in the proton-unbound nuclide 158Ta
Excited states in the neutron-deficient odd-odd proton-unbound nuclide 158Ta have been investigated in two separate experiments. In the first experiment, 166Ir nuclei were produced in the reactions of 380 MeV 78Kr ions with an isotopically enriched 92Mo target. The α-decay chain of the 9+ state in 166Ir was analyzed. Fine structure in the α decay of the 9+ state in 162Re established a 66 keV difference in excitation energy between the lowest-lying 9+ and 10+ states in 158Ta. Higher-lying states in 158Ta were populated in the reactions of 255 MeV 58Ni ions with an isotopically enriched 102Pd target. Gamma-ray decay paths that populate, depopulate, and bypass a 19− isomeric state have been id…
Fine structure in the α decay of high-spin isomers in Lu155 and Hf156
Fine structure in the a decay of high-spin isomers in Lu-155( 25/2(-)) and Hf-156(8(+))has been studied for the first time using alpha gamma- coincidence analysis. Three new a decays from Lu-155(25 ...
Lifetime measurements in 166Re : Collective versus magnetic rotation
Lifetimes of excited states in the neutron-deficient odd-odd nucleus 166Re have been measured for the first time using the recoil distance Doppler-shift method. The measured lifetime for the (8−) state; τ = 480 (80) ps, enabled an assessment of the multipolarities of the γ rays depopulating this state. Information on electromagnetic transition strengths were deduced for the γ -ray transitions from the (9−), (10−), and (11−) states, and in the case of the (10−) and (11−) states limits on the B(M1) and B(E2) strengths were estimated. The results are compared with total Routhian surface predictions and semiclassical calculations. Tilted-axis cranking calculations based on a relativistic mean-f…
Experimental investigation of the 02+ band in Sm154 as a β-vibrational band
Abstract A study of Sm 154 through γ -ray and internal conversion electron coincidence measurements was performed using the Silicon And GErmanium spectrometer (SAGE). An upper limit for the ρ 2 ( E 0 ; 2 2 + → 2 1 + ) and measurement of the ρ 2 ( E 0 ; 4 2 + → 4 1 + ) monopole transitions strengths were determined. The extracted transition strength for each is significantly lower than that predicted by either the Bohr and Mottelson β -vibration description or the interacting boson model. Hence, the long standing interpretation of these states as a collective band built on the 0 2 + state, which is conventionally assigned as a Bohr and Mottelson β vibration is questionable.
Search for the terminating27−state inNd140
In the search for the fully aligned 27(-) state in Nd-140 predicted by cranked Nilsson-Strutinsky calculations, new close-to-spherical high-spin states have been discovered. Both the close-to-spherical and the triaxial calculated states are in good agreement with the experimental results, supporting the existence of shape coexistence up to very high spins. Shell-model calculations using a newly developed effective interaction for the 50 <= N, Z <= 82 mass region are in good agreement with the observed spherical states. The comparison between the experimental and calculated level energies allowed the relative energy to be established between several proton and neutron orbitals at high energy…
Production cross section and decay study of Es243 and Md249
In the study of the odd-$Z$, even-$N$ nuclei $^{243}$Es and $^{249}$Md, performed at the University of Jyv\"askyl\"a, the fusion-evaporation reactions $^{197}$Au($^{48}$Ca,2$n$)$^{243}$Es and $^{203}$Tl($^{48}$Ca,2$n$)$^{249}$Md have been used for the first time. Fusion-evaporation residues were selected and detected using the RITU gas-filled separator coupled with the focal-plane spectrometer GREAT. For $^{243}$Es, the recoil decay correlation analysis yielded a half-life of $24 \pm 3$s, and a maximum production cross section of $37 \pm 10$ nb. In the same way, a half-life of $26 \pm 1$ s, an $\alpha$ branching ratio of 75 $\pm$ 5%, and a maximum production cross section of 300 $\pm$ 80 nb…
Investigation into the Effects of Deformation on Proton Emission Rates via Lifetime Measurements
Shapes and Collectivity in Neutron Deficient Even-Mass 188–198Pb Isotopes
Spectroscopy at the two-proton drip line: Excited states in 158W
Abstract Excited states have been identified in the heaviest known even-Z N = 84 isotone 158W, which lies in a region of one-proton emitters and the two-proton drip line. The observation of γ-ray transitions feeding the ground state establishes the excitation energy of the yrast 6+ state confirming the spin-gap nature of the α-decaying 8+ isomer. The 8+ isomer is also expected to be unbound to two-proton emission but no evidence for this decay mode was observed. An upper limit for the two-proton decay branch has been deduced as b 2 p ≤ 0.17% at the 90% confidence level. The possibility of observing two-proton emission from multiparticle isomers in nearby nuclides is considered.
Detailed spectroscopy of 193Bi
An experiment aiming to study shape coexistence in 193Bi has been performed. Due to its transitional character, it has an exceptionally large number of structures identified close to the yrast line. Many new states have been found, significantly extending the previously known level scheme of 193Bi, including several new rotational bands. The π i13/2 band was extended to I π = 45/2+. The I π = 31/2+ member of the π i13/2 band was found to de-excite also to a long-lived isomeric state. This isomeric state is located at 2350 keV and has a spin and parity of 29/2+. The half-life of the isomeric state was measured to be 85(3) μs and it decays via the emission of an 84 keV E2 transition. A level …
Comparison of gamma-ray coincidence and low-background gamma-ray singles spectrometry
Aerosol samples have been studied under different background conditions using gamma-ray coincidence and low-background gamma-ray singles spectrometric techniques with High-Purity Germanium detectors. Conventional low-background gamma-ray singles counting is a competitive technique when compared to the gamma-gamma coincidence approach in elevated background conditions. However, measurement of gamma-gamma coincidences can clearly make the identification of different nuclides more reliable and efficient than using singles spectrometry alone. The optimum solution would be a low-background counting station capable of both singles and gamma-gamma coincidence spectrometry.
Spectroscopy of 193Bi
Shapes and Collectivity in Neutron Deficient Even-Mass 188–198Pb Isotopes
The neutron deficient 188−198Pb isotopes have been studied in a Coulomb excitation measurement employing the Miniball spectrometer and radioactive beams from REX-ISOLDE, CERN. These isotopes are of particular importance as they lie in a transitional region, where the intruding structures, associated with different deformed shapes, come down in energy close to the spherical ground state. For detailed analysis of the Coulomb excitation data, the understanding of the beam composition is essential. peerReviewed
Gamma-ray and decay spectroscopy of 194,195,196At
Excited states of 195At have been studied by means of in-beam γ -ray spectroscopy and the recoil-decay tagging technique. A strongly coupled rotational band feeding the α-decaying 7/2− state via unobserved transitions was identified. This band is presumably built on the oblate proton I π = 13/2+ state. Confirming earlier measurements, α decays from the 1/2+ and 7/2− states were observed. Additionally, an E3 branch competing with the α decay of the 7/2− state was inferred. Also α decays of the odd-odd isotopes 194,196At were examined. peerReviewed
Collectivity in ${}^{\mathrm{196,198}}$Pb isotopes probed in Coulomb-excitation experiments at REX-ISOLDE
The neutron-deficient ${}^{\mathrm{196,198}}$Pb isotopes have been studied in Coulomb-excitation experiments employing the Miniball γ-ray spectrometer and radioactive ion beams from the REX-ISOLDE post-accelerator at CERN. The reduced transition probabilities of the first excited 2+ states in 196Pb and 198Pb nuclei have been measured for the first time. Values of $B(E2)={18.2}_{-4.1}^{+4.8}$ W.u. and $B(E2)={13.1}_{-3.5}^{+4.9}$ W.u., were obtained, respectively. The experiment sheds light on the development of collectivity when moving from the regime governed by the generalised seniority scheme to a region, where intruding structures, associated with different deformed shapes, start to com…
Search for fingerprints of tetrahedral symmetry in 156gd
Theoretical predictions suggest the presence of tetrahedral symmetry as an explanation for the vanishing intra-band E2 transitions at the bottom of the odd-spin negative-parity band in 156Gd. The present study reports on experiment performed to address this phenomenon. It allowed to remove certain ambiguouities related to the intra-band E2 transitions in the negative-parity bands, to determine the new inter-band transitions and reduced probability ratios B(E2)/B(E1) and, for the first time, to determine the experimental uncertainties related to the latter observable. peerReviewed
De-excitation of the strongly coupled band in Au177 and implications for core intruder configurations in the light Hg isotopes
Excited states in the proton-unbound nuclide $^{177}$Au were populated in the $^92}$Mo($^{88}$Sr, p2n) reaction and identified using the Jurogam-II and GREAT spectrometers in conjunction with the RITU gas-filled separator at the University of Jyvaskyla Accelerator Laboratory. A strongly coupled band and its decay path to the 11/2−α-decaying isomer have been identified using recoil-decay tagging. Comparisons with cranked Hartree-Fock-Bogoliubov (HFB) calculations based on Skyrme energy functionals suggest that the band has a prolate deformation and is based upon coupling the odd 1h11/2 proton hole to the excited 02+ configuration in the $^{178}$Hg core. Although these configurations might be…
Discovery of 157W and 161Os
The nuclides W-157 and Os-161 have been discovered ill reactions of Ni-58 ion beams with a Cd-106 target. The Os-161 alpha-decay energy and half-life were 6890 +/- 12 keV and 640 +/- 60 mu s. The d ...
A spectroscopic study of low-lying states in neutron-deficient astatine and francium nuclei
Lifetime measurements of excited states in W-162 and W-164 and the evolution of collectivity in rare-earth nuclei
WOS: 000400140500006
Combined in-beam electron andγ-ray spectroscopy ofHg184,186
By exploiting the SAGE spectrometer a simultaneous measurement of conversion electrons and {gamma} rays emitted in the de-excitation of excited levels in the neutron-deficient nuclei {sup 184,186}Hg was performed. The light Hg isotopes under investigation were produced using the 4n channels of the fusion-evaporation reactions of {sup 40}Ar and {sup 148,150}Sm. The measured K- and L-conversion electron ratios confirmed the stretched E2 nature of several transitions of the yrast bands in {sup 184,186}Hg. Additional information on the E0 component of the 2{sub 2}{sup +}{yields}2{sub 1}{sup +} transition in {sup 186}Hg was obtained.
Recoil-beta tagging study of the N=Z nucleus 66As
An in-beam study has been performed to further investigate the known isomeric decays and to identify T = 1 excited states in the medium-heavy N = Z = 33 nucleus 66As. The fusion-evaporation reaction 40Ca(28Si,pn) 66As was employed at beam energies of 75 and 83 MeV. The half-lives and ordering of two known isomeric states in 66As have been determined with improved accuracy. In addition, several prompt γ -ray transitions from excited states, both bypassing and decaying to the isomeric states in 66As, have been observed. Most importantly, candidates for the 4+ → 2+ and 6+ → 4+ transitions in the T = 1 band have been identified. The results are compared with shell-model calculations using the m…
Spectroscopy of the neutron-deficient nucleusOs16791
Excited states of the nucleus Os-167 have been populated by the reaction Mo-92(Kr-78,2pn). The JUROGAM gamma-ray detector array has been used in conjunction with the RITU gas-filled separator and the GREAT spectrometer to observe prompt gamma rays in coincidence with recoiling fusion-evaporation residues and their subsequent decay by alpha particle emission. By correlating prompt gamma radiation with the characteristic alpha radioactivity of Os-167, it has been possible to extend the level scheme for this nucleus significantly. In particular, an extension of the yrast band and four previously unobserved bands are reported. In addition, the recoil distance Doppler-shift method was used to de…
Confirming band assignments in $^{167}$ytterbium with gamma-gamma-electron triple-coincidence spectroscopy
International audience; Multipolarity measurements are presented for transitions in the deformed odd-mass nucleus$^{167}$ Yb in support of tentative spin assignments and level interpretations based upon the cranked-Nilsson model. Internal-conversion coefficients were measured with the SAGE (Silicon And GErmanium) spectrometer confirming several E2 transition assignments. The array of high-purity germanium detectors enabled the recording of high-multiplicity events from which $\gamma\gamma\gamma$ and $\gamma\gamma e^{-}$ data sets were extracted and the technique of high-fold $\gamma$ -ray gating was demonstrated to cleanly isolate transitions of interest.
Low-lying electromagnetic transition strengths in 180 Pt
Lifetime measurements have been performed using the 98 Mo ( 86 Kr , 4 n ) 180 Pt reaction at a beam energy of 380 MeV, and the recoil distance Doppler-shift method. In a second experiment the 168 Yb ( 16 O , 4 n ) 180 Pt reaction at a beam energy of 88 MeV using the Ge-gated γ − γ fast timing technique was used to determine lifetimes. Lifetimes of the four lowest yrast states of 180 Pt have been determined. The experimental data are compared to calculations within the framework of the interacting boson model and the general collective model. Both models predict a deformed ground state and are consistent with all the remaining experimental results. peerReviewed
Shell-Structure and Pairing Interaction in Superheavy Nuclei: Rotational Properties of theZ=104NucleusRf256
The rotational band structure of the $Z=104$ nucleus $^{256}\mathrm{Rf}$ has been observed up to a tentative spin of $20\ensuremath{\hbar}$ using state-of-the-art $\ensuremath{\gamma}$-ray spectroscopic techniques. This represents the first such measurement in a superheavy nucleus whose stability is entirely derived from the shell-correction energy. The observed rotational properties are compared to those of neighboring nuclei and it is shown that the kinematic and dynamic moments of inertia are sensitive to the underlying single-particle shell structure and the specific location of high-$j$ orbitals. The moments of inertia therefore provide a sensitive test of shell structure and pairing i…
Fine structure in the α decay of Lu156 and Ta158
Spin-dependent evolution of collectivity in 112Te
The evolution of collectivity with spin along the yrast line in the neutron-deficient nucleus 112Te has been studied by measuring the reduced transition probability of excited states in the yrast band. In particular, the lifetimes of the 4+ and 6+ excited states have been determined by using the recoil distance Doppler-shift method. The results are discussed using both large-scale shell-model and total Routhian surface calculations. peerReviewed
Detailed spectroscopy of 195Bi
An experiment focused on the study of shape coexistence and new high-spin structures in 195 Bi has been performed. The nucleus is in a transitional region of the bismuth isotope chain. A large number of new states have been found, resulting in a significant extension of the previously known level scheme. Several new collective structures have been identified. A strongly coupled rotational band built upon the 13 / 2 + isomeric state was extended up to I π = ( 49 / 2 + ) and an energy of 5706 keV. The I π = 31 / 2 + member of the π i 13 / 2 band was also found to feed a new long-lived isomeric state with an excitation energy of 2616 keV and a spin and parity of I π = 29 / 2 + . The half-life …
First observation of excited states of 173Hg
The neutron-deficient nucleus 173Hg has been studied following fusion-evaporation reactions. The observation of the decay of excited states via γ radiation are reported for the first time and a tentative level scheme is proposed. The proposed level scheme is discussed within the context of the systematics of neighboring neutron-deficient Hg nuclei. In addition to the γ -ray spectroscopy, the α decay of this nucleus has been measured yielding superior precision to earlier measurements. peerReviewed
First identification of rotational band structures inRe9175166
Despite that it is more than 100 years since the atomic nucleus was first dis- covered by Ernest Rutherford and coworkers, many of its features still elude our understanding. The fact that the fundamental interactions between the nuclear constituents; nucleons, and ultimately quarks, are not yet known in detail, and the complexity of the nuclear many-body system compound the great challenges facing theoretical interpretations of experimental data. It is therefore important to focus on distinct phenomena where experimental mea- surements can be compared with theoretical predictions, providing stringent tests of theory. One such area is the nuclear phenomenology of collective excitations rela…
Population of a low-spin positive-parity band from high-spin intruder states in 177Au: The two-state mixing effect
The extremely neutron-deficient isotopes 177,179Au were studied by means of in-beam ?-ray spectroscopy. Specific tagging techniques, ?-decay tagging in 177Au and isomer tagging in 179Au, were used for these studies. Feeding of positive-parity, nearly spherical states, which are associated with 2d3/2 and 3s1/2 proton-hole configurations, from the 1i13/2 proton-intruder configuration was observed in 177Au. Such a decay path has no precedent in odd-Au isotopes and it is explained by the effect of mixing of wave functions of the initial state. © 2020
Delayed or absent π(h11/2)2 alignment in Xe111
High-Kfour-quasiparticle states inGd138
States above the known ${K}^{\ensuremath{\pi}}={8}^{\ensuremath{-}}$ 6 $\ensuremath{\mu}$s isomer in $^{138}\mathrm{Gd}$ have been populated with the $^{106}\mathrm{Cd}$($^{36}\mathrm{Ar}$,$2p2n$) reaction at a beam energy of 180 MeV at the University of Jyv\"askyl\"a, Finland. The recoil-isomer tagging technique was utilized to correlate delayed $\ensuremath{\gamma}$-ray decays, detected in the GREAT focal plane spectrometer, with prompt decays measured in the JUROGAM II spectrometer at the target position. The lifetime of the ${K}^{\ensuremath{\pi}}={8}^{\ensuremath{-}}$ isomeric state has been remeasured as 6.2(2) $\ensuremath{\mu}$s. Two high-lying strongly coupled bands have been estab…
Lifetime measurement in 195Po
The lifetime of the 17/2+ yrast state in 195Po has been measured using the recoil distance Doppler-shift technique to be $ \tau$ = 43(11) ps. The lifetime was extracted from the singles $ \gamma$ -ray spectra obtained by using the recoil-decay tagging method. The present work provides more information of the coupling schemes, shapes and configuration mixing in neutron-deficient odd-mass Po nuclei.
High-spin states of $^{218}$Th
Abstract High-spin states in the N = 128 nucleus 218Th have been investigated following fusion–evaporation reactions, using the recoil-decay tagging technique. Due to the short-lived nature of the ground state of 218Th prompt γ rays have been correlated with the α decay of the daughter nucleus 214Ra. The level scheme representing the decay of excited states has been extended to (16+) with the observation of six previously unreported transitions. The observations are compared with the results of shell model calculations and within the context of the systematics of neighbouring nuclei.
Isomer-tagged differential-plunger measurements in 113Xe
The 278-keV M2 γ decay from the νh11/2 isomeric state in 113Xe has been observed for the first time using the recoil-isomer tagging technique. The half-life of the isomer has been measured to be 6.9(3) μs. The derived B(M2) value is in agreement with the trend of systematic measurements of M2 transition strengths in neutron-deficient tellurium and tin isotopes. The lifetime of the first excited state in the νh11/2 band has been measured using the recoil distance Doppler-shift method. The extracted B(E2) value has been compared to theoretical CD-Bonn calculations and recent lifetime measurements in 109Te. This comparison of B(E2) values has been used to shed light on the possible influence o…
Spectroscopy ofHo144using recoil-isomer tagging
Excited states in the proton-unbound odd-odd nucleus $^{144}\mathrm{Ho}$ have been populated using the $^{92}\mathrm{Mo}(^{54}\mathrm{Fe},\mathit{pn})^{144}\mathrm{Ho}$ reaction and studied using the recoil-isomer-tagging technique. The alignment properties and signature splitting of the rotational band above the ${I}^{\ensuremath{\pi}}=({8}^{+})^{144m}\mathrm{Ho}$ isomer have been analyzed and the isomer confirmed to have a $\ensuremath{\pi}{h}_{11/2}\ensuremath{\bigotimes}\ensuremath{\nu}{h}_{11/2}$ two-quasiparticle configuration. The configuration-constrained blocking method has been used to calculate the shapes of the ground and isomeric states, which are both predicted to have triaxia…
Characterizing the atomic mass surface beyond the proton drip line via {\alpha}-decay measurements of the {\pi}s1/2 ground state of 165Re and the {\pi}h11/2 isomer in 161Ta
The α-decay chains originating from the πs1/2 and πh11/2 states in 173Au have been investigated following fusion-evaporation reactions. Four generations of α radioactivities have been correlated with 173Aum leading to a measurement of the α decay of 161Tam. It has been found that the known α decay of 161Ta, which was previously associated with the decay of the ground state, is in fact the decay of an isomeric state. This work also reports on the first observation of prompt γ rays feeding the ground state of 173Au. This prompt γ radiation was used to aid the study of the α-decay chain originating from the πs1/2 state in 173Au. Three generations of α decays have been correlated with this stat…
Competing single-particle and collective states in the low-energy structure of 113I
To understand the low-energy structure of the neutron deficient iodine isotopes, lifetimes for the low-lying 9/2+ and 11/2+ positive-parity states in 113I have been measured as τ = 28(4) ps and τ = 3.7(7) ps, respectively. The lifetime for the 11/2− state, which feeds the 9/2+ and 11/2+ states, was remeasured with improved accuracy as τ = 216(7) ps. The reduced transition probability, B(E2) = 32(5) W.u., for the 9/2+ → 5/2+ transition agrees with that calculated within the shell model using a Hamiltonian based on the charge-dependent Bonn nucleon-nucleon interaction. In contrast, the much larger transition probability, B(E2) = 209(39) W.u., measured for the 11/2+ → 7/2+ transition has been …
Lifetime measurements of excited states in W162 and W164 and the evolution of collectivity in rare-earth nuclei
Lifetimes of the first excited 2(+) states in the extremely neutron- deficient W-162 and W-164 nuclei have been measured using the recoil distance Doppler shift technique. Experimental B(E2) data f ...
Spectroscopy of proton-rich 66^Se up to J^�� = 6^+: isospin-breaking effect in the A = 66 isobaric triplet
Candidates for three excited states in the 66^Se have been identified using the recoil-�� tagging method together with a veto detector for charged-particle evaporation channels. These results allow a comparison of mirror and triplet energy differences between analogue states across the A = 66 triplet as a function of angular momentum. The extracted triplet energy differences follow the negative trend observed in the f_7/2 shell. Shell-model calculations indicate a continued need for an additional isospin non-conserving interaction in addition to the Coulomb isotensor part as a function of mass.
Spectroscopy of At 201 including the observation of a shears band and the 29/2 + isomeric state
The excited states of 201At were studied and an isomeric 29/2 + state [T1/2 = 3.39(9) μs] was identified by using a fusion-evaporation reaction, a gas-filled recoil separator, and recoil gating techniques. The 29/2 + state is suggested to originate from the π(h9/2) ⊗ |200Po;11− configuration, and it decays through the 269- and 339-keV E2- and E3-type transitions, respectively. Moreover, a cascade of magnetic dipole transitions that is suggested to originate from a shears band was observed by using recoil-gated γ − γ (−γ ) coincidence techniques. peerReviewed
The new vacuum-mode recoil separator MARA at JYFL
Abstract A new vacuum-mode recoil separator MARA (Mass Analysing Recoil Apparatus) is under design and construction at the Department of Physics in the University of Jyvaskyla. The separator is intended to separate reaction products from the primary beam in mass region below A = 150 . The ion-optical configuration of the separator will be QQQDEDM, where a magnetic quadrupole (Q) triplet is followed by an electrostatic deflector (DE) and a magnetic dipole (DM). The total length of MARA will be less than 7.0 m and the first order resolving power more than 250 for a beam spot size of 2 mm. In this contribution the main properties of MARA are given and results from simulations are shown.
Study of Intermediate-spin States of $^{98}$Y
The nuclear structure of the odd–odd nucleus 98Y has been re-investigated by observing prompt γ rays emitted following the proton-induced fission of a 238U target, using the JUROGAM-II multidetector array. New highspin decays have been observed and placed in the level schemes using triple coincidences. The experimental level energies and γ-decay patterns are compared to GICM and QPRM calculations, assuming that this neutronrich N = 59 isotone is spherical at low energies and prolate deformed at intermediate spins. Web of Science 47 3 916 911
Collective excitations in the transitional nuclei 163Re and 165Re
Excited states in the neutron-deficient nuclei 163 75 Re88 and 165 75 Re90 were populated in the 106Cd(60Ni, p2nγ ) and 92Mo(78Kr, 3p2nγ ) fusion-evaporation reactions at bombarding energies of 270 and 380 MeV, respectively. γ rays were detected at the target position using the JUROGAM spectrometer while recoiling ions were separated in-flight by the RITU gas-filled recoil separator and implanted in the GREAT spectrometer. The energy level schemes for 163Re and 165Re were identified using recoil-decay correlation techniques. At low spin, the yrast bands of these isotopes consist of signature partner bands based on a single πh11/2 quasiproton configuration. The bands display large energy spl…