0000000000480538

AUTHOR

Giorgio Scita

Abstract CT261: METAMECH -A Master Observational Trial empowering mechanobiology translational research and mechanobased proof of concept trials in breast cancer

Abstract Background: Breast cancer (BC) is the most frequent tumor in women worldwide. BC lethality is caused by aggressive, therapy-resistant metastases (mBC). Preliminary data have shown that mBC lesions are invariably embedded into a densely packed network of fibrous extracellular matrix, making the metastatic microenvironment a potent inducer of mechanical inputs, ultimately leading to the activation of the transcription factors YAP/TAZ. Aberrant mechano-signaling could thus represent a vulnerability of metastasis, which can be exploited to develop new therapeutic strategies. To investigate how metastatic outgrowth is regulated by the physical properties of the microenvironment, and how…

research product

IRSp53 controls plasma membrane shape and polarized transport at the nascent lumen in epithelial tubules.

It is unclear whether the establishment of apical–basal cell polarity during the generation of epithelial lumens requires molecules acting at the plasma membrane/actin interface. Here, we show that the I-BAR-containing IRSp53 protein controls lumen formation and the positioning of the polarity determinants aPKC and podocalyxin. Molecularly, IRSp53 acts by regulating the localization and activity of the small GTPase RAB35, and by interacting with the actin capping protein EPS8. Using correlative light and electron microscopy, we further show that IRSp53 ensures the shape and continuity of the opposing plasma membrane of two daughter cells, leading to the formation of a single apical lumen. G…

research product

Tissue fluidification promotes a cGAS-STING cytosolic DNA response in invasive breast cancer.

: The process in which locally confined epithelial malignancies progressively evolve into invasive cancers is often promoted by unjamming, a phase transition from a solid-like to a liquid-like state, which occurs in various tissues. Whether this tissue-level mechanical transition impacts phenotypes during carcinoma progression remains unclear. Here we report that the large fluctuations in cell density that accompany unjamming result in repeated mechanical deformations of cells and nuclei. This triggers a cellular mechano-protective mechanism involving an increase in nuclear size and rigidity, heterochromatin redistribution and remodelling of the perinuclear actin architecture into actin rin…

research product

Compromised nuclear envelope integrity drives TREX1-dependent DNA damage and tumor cell invasion

Although mutations leading to a compromised nuclear envelope cause diseases such as muscular dystrophies or accelerated aging, the consequences of mechanically induced nuclear envelope ruptures are less known. Here, we show that nuclear envelope ruptures induce DNA damage that promotes senescence in non-transformed cells and induces an invasive phenotype in human breast cancer cells. We find that the endoplasmic reticulum (ER)-associated exonuclease TREX1 translocates into the nucleus after nuclear envelope rupture and is required to induce DNA damage. Inside the mammary duct, cellular crowding leads to nuclear envelope ruptures that generate TREX1-dependent DNA damage, thereby driving the …

research product

Compromised nuclear envelope integrity drives tumor cell invasion

AbstractWhile mutations leading to a fragile envelope of the cell nucleus are well known to cause diseases such as muscular dystrophies or accelerated aging, the pathophysiological consequences of the recently discovered mechanically induced nuclear envelope ruptures in cells harboring no mutation are less known. Here we show that repeated loss of nuclear envelope integrity in nuclei experiencing mechanical constraints promotes senescence in nontransformed cells, and induces an invasive phenotype including increased collagen degradation in human breast cancer cells, both in vitro and in a mouse xenograft model of breast cancer progression. We show that these phenotypic changes are due to th…

research product

Unjamming overcomes kinetic and proliferation arrest in terminally differentiated cells and promotes collective motility of carcinoma

Under homeostatic conditions, mature epithelia are locked in a kinetically-silent, jammed state. During wound repair or branching morphogenesis epithelia must unjam and acquire liquid-like properties. These events might be recapitulated in the transition from in situ to invasive cancer stages. How cells control this transition and how biologically relevant it is, however, remains unclear. Recently, we showed that altering RAB5A levels, a master regulator of endosomal trafficking, is sufficient to re-awaken motility in jammed epithelia, through ill-defined, endocytic-sensitive biochemical pathways. Here, we show that RAB5A promotes non-clathrin-dependent internalization of epidermal growth f…

research product

IRSp53 shapes the plasma membrane and controls polarized transport at the nascent lumen during epithelial morphogenesis

AbstractEstablishment of apical–basal cell polarity is necessary for generation of luminal and tubular structures during epithelial morphogenesis. Molecules acting at the membrane/ actin interface are expected to be crucial in governing these processes. Here, we show that the I-BAR-containing IRSp53 protein is restricted to the luminal side of epithelial cells of various glandular organs, and is specifically enriched in renal tubules in human, mice, and zebrafish. Using three-dimensional cultures of renal MDCK and intestinal Caco-2 cysts, we show that IRSp53 is recruited early after the first cell division along the forming apical lumen, and is essential for formation of a single lumen and …

research product

Unjamming overcomes kinetic and proliferation arrest in terminally differentiated cells and promotes collective motility of carcinoma.

During wound repair, branching morphogenesis and carcinoma dissemination, cellular rearrangements are fostered by a solid-to-liquid transition, known as unjamming. The biomolecular machinery behind unjamming and its pathophysiological relevance remain, however, unclear. Here, we study unjamming in a variety of normal and tumorigenic epithelial two-dimensional (2D) and 3D collectives. Biologically, the increased level of the small GTPase RAB5A sparks unjamming by promoting non-clathrin-dependent internalization of epidermal growth factor receptor that leads to hyperactivation of the kinase ERK1/2 and phosphorylation of the actin nucleator WAVE2. This cascade triggers collective motility effe…

research product