0000000000480718

AUTHOR

Jonna Piiparinen

0000-0002-6464-7802

showing 8 related works from this author

European Union legislation on macroalgae products

2021

AbstractMacroalgae-based products are increasing in demand also in Europe. In the European Union, each category of macroalgae-based products is regulated separately. We discuss EU legislation, including the law on medicinal products, foods including food supplements and food additives, feed and feed additives, cosmetics, packaging materials, fertilizers and biostimulants, as well as biofuels. Product safety and consumer protection are the priorities with any new products. Macroalgae products can be sold as traditional herbal medicines. The novel food regulation applies to macroalgae foods that have not previously been used as food, and organic macroalgae are a specific regulatory category. …

0106 biological sciencesorganic foodmedicineEU directivesNovel foodelintarvikevalvonta01 natural sciencesEnvironmental protectionfood control and monitoringmerilevätsääntelyfood productionbiopolttoaineetmedia_commonalgae2. Zero hunger0303 health scienceslainsäädäntöcosmeticskosmeettiset tuotteetfeedtrade agreementsregulationelintarvikkeetSubsidyfertilizerEU-direktiivit3. Good healthEuropeProduct (business)productsluomuruokabiofueladditivesenterprisesmakrolevätmacroalgaefood.ingredientLegislationEuroopan UnionilevätAquatic Sciencelegislationravinto03 medical and health sciencesfoodlisäaineetmedia_common.cataloged_instanceEuropean Union14. Life underwaterforeign substancesEuropean unionvierasaineet030304 developmental biologyelintarviketuotantobusiness.industryfood010604 marine biology & hydrobiologyFood additiveVDP::Matematikk og Naturvitenskap: 400Consumer protectionconsumer protection policyyrityksetlääkkeetAgricultureseaweedfoodstuffstuotteetkuluttajansuojalannoitteetbusinessAgronomy and Crop Sciencekauppasopimukset
researchProduct

Upwelled plankton community modulates surface bloom succession and nutrient availability in a natural plankton assemblage

2022

Upwelling of nutrient-rich waters into the sunlit surface layer of the ocean supports high primary productivity in eastern boundary upwelling systems (EBUSs). However, subsurface waters contain not only macronutrients (N, P, Si) but also micronutrients, organic matter and seed microbial communities that may modify the response to macronutrient inputs via upwelling. These additional factors are often neglected when investigating upwelling impacts on surface ocean productivity. Here, we investigated how different components of upwelled water (macronutrients, organic nutrients and seed communities) drive the response of surface plankton communities to upwelling in the Peruvian coastal zone. Re…

Pacific Oceanfungimarine ecologyplanktonseaskumpuaminenravinteetmerivesinutrients (plants)nutrientsVDP::Matematikk og Naturvitenskap: 400::Geofag: 450mikrobitmicrobesmeriekologiameretEcology Evolution Behavior and SystematicsEarth-Surface ProcessesseawaterTyyni valtameri
researchProduct

Bioflocculation of Euglena gracilis via direct application of fungal filaments: a rapid harvesting method

2021

Funding Information: Special thanks to the US Agricultural Research Service for the provision of fungal strains. Thanks also to Dr Marilyn Wiebe (Technical Research Centre of Finland) for her expert advice on fungi and Johanna Oja for her technical help. This research was enabled by funding from The Land and Water Technology Foundation, The Finnish Cultural Foundation, and The Finnish Foundation for Technology Promotion. Publisher Copyright: © 2021, The Author(s). The high cost and environmental impact of traditional microalgal harvesting methods limit commercialization of microalgal biomass. Fungal bioflocculation of microalgae is a promising low-cost, eco-friendly method but the range of …

FlocculationEuglena gracilisFilamentous fungifungal pelletizationved/biology.organism_classification_rank.speciesBiomassPlant ScienceAquatic ScienceleväthiutaleetmenetelmätPenicillium restrictumAlgaeSettlingDry weightBioflocculationEuglena gracilisFungal pelletizationMicroalgal harvestingmicroalgal harvestingbiologyChemistryved/biologyfilamentous fungibiofocculationmikrolevätPulp and paper industrybiology.organism_classificationhiutaloituminenkustannuksetsadonkorjuuympäristövaikutuksetPleurotus ostreatus
researchProduct

Solar PAR and UVR modify the community composition and photosynthetic activity of sea ice algae

2015

The effects of increased photosynthetically active radiation (PAR) and ultraviolet radiation (UVR) on species diversity, biomass and photosynthetic activity were studied in fast ice algal communities. The experimental set-up consisted of nine 1.44 m(2) squares with three treatments: untreated with natural snow cover (UNT), snow-free (PAR + UVR) and snow-free ice covered with a UV screen (PAR). The total algal biomass, dominated by diatoms and dinoflagellates, increased in all treatments during the experiment. However, the smaller biomass growth in the top 10-cm layer of the PAR + UVR treatment compared with the PAR treatment indicated the negative effect of UVR. Scrippsiella complex (mainly…

Baltic States0106 biological sciencesBaltic Sea010504 meteorology & atmospheric sciencesUltraviolet Raysbiomassata1172Sea iceChlorophytalevätUVRPhotosynthesis01 natural sciencesApplied Microbiology and BiotechnologyMicrobiologyyhteyttäminenAlgaeChlorophytaSnowBotanySolar EnergyIce CoverultraviolettisäteilyBiomasslajit14. Life underwaterPhotosynthesis0105 earth and related environmental sciencesDiatomsalgaeBiomass (ecology)Ecologybiologyjää010604 marine biology & hydrobiologyta1183photosynthetic activitybiology.organism_classificationdiversiteettiLight intensityDiatomAlveolataItämeriPhotosynthetically active radiationDinoflagellidata1181merijääGreen algaeFEMS Microbiology Ecology
researchProduct

Bacterioplankton dynamics driven by interannual and spatial variation in diatom and dinoflagellate spring bloom communities in the Baltic Sea

2020

17 pages, 6 figures, 2 tables, supporting information https://doi.org/10.1002/lno.11601.-- This is the pre-peer reviewed version of the following article: María Teresa Camarena‐Gómez, Clara Ruiz‐González, Jonna Piiparinen, Tobias Lipsewers, Cristina Sobrino, Ramiro Logares, Kristian Spilling, Bacterioplankton dynamics driven by interannual and spatial variation in diatom and dinoflagellate spring bloom communities in the Baltic Sea, Limnology and Oceanography 66(1): 255-271 (2021), which has been published in final form at https://doi.org/10.1002/lno.11601. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions

0106 biological sciencesSUCCESSIONLimnologyAquatic ScienceOceanography01 natural sciencesAlgal bloomsuolapitoisuusbakteerit03 medical and health sciencesBACTERIAL PRODUCTIONtaksonomiaPHYTOPLANKTONPhytoplanktonpiilevätDISSOLVED ORGANIC-CARBON14. Life underwaterlajitleväkukinta030304 developmental biology0303 health sciencespanssarilevätPRODUCTIVITYLIMITATIONbiologykoostumus010604 marine biology & hydrobiologyfungiplanktonDinoflagellateVDP::Matematikk og Naturvitenskap: 400BacterioplanktoneliöyhteisötSpring bloomPlanktonVDP::Matematikk og Naturvitenskap: 400::Zoologiske og botaniske fag: 480::Marinbiologi: 497mikrolevätbiology.organism_classificationDiatomOceanographyGeography1181 Ecology evolutionary biologyGROWTHPOPULATIONSCRENOTHRIXABUNDANCElämpötilaLimnology and Oceanography
researchProduct

Factors controlling plankton productivity, particulate matter stoichiometry, and export fluxin the coastal upwelling system off Peru

2020

Abstract. Eastern boundary upwelling systems (EBUS) are among the most productive marine ecosystems on Earth. The high productivity in surface waters is facilitated by upwelling of nutrient-rich deep waters, with high light availability enabling fast phytoplankton growth and nutrient utilization. However, there are numerous biotic and abiotic factors modifying productivity and biogeochemical processes. Determining these factors is important because EBUS are considered hotspots of climate change, and reliable predictions on their future functioning requires understanding of the mechanisms driving biogeochemical cycles therein. In this study, we used in situ mesocosms to obtain mechanistic un…

Biogeochemical cycleOceanographyWater columnbiologyPhytoplanktonAkashiwo sanguineaEnvironmental scienceUpwellingDominance (ecology)Planktonbiology.organism_classificationMesocosm
researchProduct

KOSMOS 2017 Peru Side Experiment: nutrients, phytoplankton abundances, enzyme rates, photophysiology

2022

This data was collected during an short-term incubation experiment in March 2017 that investigated the response of a surface plankton community to upwelling. This experiment was carried in the framework of the SFB754-funded KOSMOS mesocosm study that took place in La Punta, Callao, Peru between February-April 2017. A total of six different treatments were used to disentangle chemical and biological characteristics of deep water that influence surface plankton blooms: 2 different deep water sources with different nutrient concentrations; 3 treatments to distinguish the effects of inorganic nutrients, organic nutrients and deep water microbial populations. Measured variables include inorganic…

ratioDay of experimentSFB754colored dissolved organic matter at 325 nmNitriteChlorophyll aAbsorption coefficient colored dissolved organic matter at 254 nmClimate - Biogeochemistry Interactions in the Tropical Ocean (SFB754)colorimetric determinationFluorometerFluorometricNitrateNanoplanktonPhytoplankton cells phycocyanin-containing (FL-4)PicoeukaryotesFluorometer fast repetition rateCalculatedFlow cytometryNutrient consumption ratioforward scatterSynechococcusupwelling systemsMesocosm experimentSpectrophotometricClimate Biogeochemistry Interactions in the Tropical Ocean SFB754SilicateBiogeochemistryBiospheric SciencesMaximum photochemical quantum yield of photosystem IIenzyme activitycell sizeDissolved inorganic nitrogen/dissolved inorganic phosphorus ratioKOSMOS_2017chainsAbsorption coefficient colored dissolved organic matter 250 nm/365 nm ratioeastern tropical South Pacific OceanKOSMOSExcess phosphateAbsorption coefficient colored dissolved organic matter at 325 nmNatural SciencesGeosciencescolored dissolved organic matter at 254 nmphycocyanin containing FL 4Absorption coefficientPhosphateTank numberPhytoplankton cells chainsNetwork of Leading European AQUAtic MesoCOSM Facilities Connecting Mountains to Oceans from the ArctReplicatenutrientsfast repetition rateDATE TIMECryptophytesMicrophytoplanktonPhytoplankton cellsLeucine aminopeptidase activityDissolved inorganic nitrogen dissolved inorganic phosphorus ratiofungiEnzymatic assayContinuous flow analyserTreatmentDATE/TIMEcolored dissolved organic matter 250 nm 365 nmPhytoplanktonPhytoplankton cell size forward scatterNetwork of Leading European AQUAtic MesoCOSM Facilities Connecting Mountains to Oceans from the Arctic to the Mediterranean (AQUACOSM)CDOMContinuous flow analyser colorimetric determinationNitrate and Nitrite
researchProduct

KOSMOS 2017 Peru mesocosm study: overview data

2020

Eastern boundary upwelling systems (EBUS) are among the most productive marine ecosystems on Earth. The production of organic material is fueled by upwelling of nutrient-rich deep waters and high incident light at the sea surface. However, biotic and abiotic factors can mod- ify surface production and related biogeochemical processes. Determining these factors is important because EBUS are considered hotspots of climate change, and reliable predic- tions of their future functioning requires understanding of the mechanisms driving the biogeochemical cycles therein. In this field experiment, we used in situ mesocosms as tools to improve our mechanistic understanding of processes con- trolling…

KOSMOS_2017Binary ObjectMesocosm experimentClimate - Biogeochemistry Interactions in the Tropical Ocean (SFB754)Climate Biogeochemistry Interactions in the Tropical Ocean SFB754BiogeochemistryBinary Object Media TypeNatural SciencesBinary Object (File Size)Binary Object File SizeBiospheric SciencesGeosciencesBinary Object (Media Type)
researchProduct