0000000000481122

AUTHOR

P. Shlyapnikov

showing 4 related works from this author

Search for neutralino pair production at root s = 189 GeV

2001

A search for pair-production of neutralinos at a LEP centre-of-mass energy of 189 GeV gave no evidence for a signal. This limits the neutralino production cross-section and excludes regions in the parameter space of the Minimal Supersymmetric Standard Model (MSSM).

GRAVITINOSParticle physicsCOLLISIONSPhysics and Astronomy (miscellaneous)LOWEST ORDER CALCULATIONSMONTE-CARLO SIMULATIONFOS: Physical sciences2-PHOTON PROCESSESParameter space01 natural sciencesSignalPartícules (Física nuclear)High Energy Physics - ExperimentPHYSICSHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesEVENT GENERATOR[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]RADIATIVE-CORRECTIONS010306 general physicsEngineering (miscellaneous)SUPERSYMMETRYDELPHIHIGH-ENERGIESPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyLARGE ELECTRON POSITRON COLLIDERPair productionPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHINeutralinoPARTICLE PHYSICSFísica nuclearMONTE-CARLO SIMULATION; LOWEST ORDER CALCULATIONS; RADIATIVE-CORRECTIONS; 2-PHOTON PROCESSES; EVENT GENERATOR; HIGH-ENERGIES; SUPERSYMMETRY; PHYSICS; GRAVITINOS; COLLISIONSHigh Energy Physics::ExperimentEnergy (signal processing)Particle Physics - ExperimentMinimal Supersymmetric Standard ModelEUROPEAN PHYSICAL JOURNAL C
researchProduct

A measurement of the Tau topological branching ratios

2001

Using data collected in the DELPHI detector at LEP-1, measurements of the inclusive tau branching ratios for decay modes containing one, three, or five charged particles have been performed, giving the following results: B_1 = B(\tau^- -> (particle)^- \geq 0pi^0 \geq 0K^0 \nu_\tau(\bar{\nu})) = (85.316 +/- 0.093 +/- 0.049)%; B_3 = B(\tau^- -> 2h^-h^+ \geq 0pi^0 \geq 0K^0 \nu_\tau) = (14.569 +/- 0.093 +/- 0.048)%; B_5 = B(\tau^- -> 3h^-2h^+ \geq 0pi^0 \geq 0K^0 \nu_\tau) = (0.115 +/- 0.013 +/- 0.006)%, where h is either a charged pi or K meson. The first quoted uncertainties are statistical and the second systematic.

Particle physicsPhysics and Astronomy (miscellaneous)MesonPAIR PRODUCTIONENERGIESFOS: Physical sciencesBranching (polymer chemistry)01 natural sciencesCROSS-SECTIONSHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)BHABHA SCATTERINGMONTE-CARLOMONTE-CARLO; RADIATIVE-CORRECTIONS; BHABHA SCATTERING; PARTICLE PHYSICS; DELPHI DETECTOR; PAIR PRODUCTION; CROSS-SECTIONS; CP-INVARIANCE; ENERGIES; DECAY0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]RADIATIVE-CORRECTIONS010306 general physicsEngineering (miscellaneous)DELPHIPhysicshigh energy collider010308 nuclear & particles physicsLEPDELPHI DETECTORCharged particleFIS/01 - FISICA SPERIMENTALEPARTICLE PHYSICSHigh Energy Physics::ExperimentFísica nuclearCP-INVARIANCEDECAYParticle Physics - Experiment
researchProduct

A Precise Measurement of the $\tau$ Polarisation at LEP-1

2000

The $\tau$ polarisation has been studied with the ${\rm e^+e^-}\to \tau^+\tau^-$ data collected by the DELPHI detector at LEP in 1993, 1994 and 1995 around the Z resonance firstly through the exclusive decay channels ${\rm e}\nu\bar{\nu}$ , $\mu\nu\bar{\nu}$ , $\pi\nu$ , $\rho\nu$ and ${\rm a}_1\nu$ and secondly with an inclusive hadronic analysis which benefits from a higher efficiency and a better systematic precision. The results have been combined with those previously published on 1990 to 1992 DELPHI data, to produce results which reflect the full LEP-1 statistics. The fit of the $\tau$ polarisation dependence on the production angle yielded the polarisation parameters ${\cal A}_{_{\sc…

Particle physicsCOLLISIONSscientific informationPOLARIZATIONPhysics and Astronomy (miscellaneous)LUND MONTE-CARLOENERGIESElectron–positron annihilationHadron01 natural sciencesComputer Science::Digital LibrariesDECAYSPartícules (Física nuclear)informationPHYSICSNEUTRINO HELICITYBHABHA SCATTERINGOpen Access0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]RADIATIVE-CORRECTIONSComputer Science::Symbolic Computation010306 general physicsEngineering (miscellaneous)LUND MONTE-CARLO; NEUTRINO HELICITY; MICHEL PARAMETERS; RADIATIVE-CORRECTIONS; BHABHA SCATTERING; DECAYS; POLARIZATION; PHYSICS; COLLISIONS; ENERGIESBhabha scatteringDELPHIPhysics010308 nuclear & particles physicscommunicationPhysicsHigh Energy Physics::PhenomenologyepistemologyWeinberg angleMICHEL PARAMETERSPolarization (waves)LARGE ELECTRON POSITRON COLLIDERPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIMichel parametersPARTICLE PHYSICSAngular dependenceFísica nuclearHigh Energy Physics::ExperimentParticle Physics - ExperimentOpen Society InstituteLepton
researchProduct

Cross-sections and leptonic forward-backward asymmetries from the Z(0) running of LEP

2000

During 1993 and 1995 LEP was run at 3 energies near the Z $^0$ peak in order to give improved measurements of the mass and width of the resonance. During 1994, LEP operated only at the Z $^0$ peak. In total DELPHI accumulated data corresponding to an integrated luminosity of approximately 116 pb $^{-1}$ . Analyses of the hadronic cross-sections and of the cross-sections and forward-backward asymmetries in the leptonic channels used the most precise evaluations of the LEP energies. In the dimuon channel, events with a photon radiated from the initial state have been used to probe the cross-sections and asymmetries down to PETRA energies. Model independent fits to all DELPHI lineshape and asy…

Particle physicsE+E ANNIHILATIONPhysics and Astronomy (miscellaneous)Electron–positron annihilationSQUARE-ROOT-S=29 GEVHadronCHARGE ASYMMETRIES01 natural sciencesResonance (particle physics)LuminosityStandard ModelNuclear physicsMONTE-CARLOSLC ENERGIES0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]RADIATIVE-CORRECTIONSANGLE BHABHA SCATTERING010306 general physicsEngineering (miscellaneous)DELPHIPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyOrder (ring theory)Weinberg angleMUON-PAIR PRODUCTIONSQUARE-ROOT-SLARGE ELECTRON POSITRON COLLIDEROF-MASS ENERGIESPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHILarge Electron–Positron ColliderPARTICLE PHYSICSHigh Energy Physics::ExperimentFísica nuclearMUON-PAIR PRODUCTION; ANGLE BHABHA SCATTERING; OF-MASS ENERGIES; SQUARE-ROOT-S; MONTE-CARLO; RADIATIVE-CORRECTIONS; SQUARE-ROOT-S=29 GEV; CHARGE ASYMMETRIES; E+E ANNIHILATION; SLC ENERGIESParticle Physics - Experiment
researchProduct