0000000000481459

AUTHOR

K. Sasaki

showing 8 related works from this author

Electron-positron annihilation into phi f_{0}(980) and clues for a new 1^{--} resonance

2007

We study the e^{+}e^{-} to phi pi pi reaction for pions in an isoscalar s-wave which is dominated by loop mechanisms. For kaon loops we start from the conventional RCHPT, but use the unitarized amplitude for KbarK-pipi scattering and the full kaon form factor instead of the lowest order terms. We study also effects of vector mesons using RCHPT supplemented with the conventional anomalous term for VVP interactions and taking into account the effects of heavy vector mesons in the K*K transition form factor. We find a peak in the dipion invariant mass around the f_{0}(980) as in the experiment. Selecting the phi f_{0}(980) contribution as a function of the e^{+}e^{-} energy we also reproduce t…

High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Nuclear TheoryFísicaFOS: Physical sciencesHigh Energy Physics::ExperimentNuclear Experiment
researchProduct

ScalarΛNandΛΛinteraction in a chiral unitary approach

2006

We study the central part of the {lambda}N and {lambda}{lambda} potential by considering the correlated and uncorrelated two-meson exchange in addition to the {omega} exchange contribution. The correlated two-meson exchange is evaluated within a chiral unitary approach. We find that a short-range repulsion is generated by the correlated two-meson potential, which also produces an attraction in the intermediate-distance region. The uncorrelated two-meson exchange produces a sizable attraction in all cases that is counterbalanced by the {omega} exchange contribution.

PhysicsNuclear and High Energy PhysicsParticle physicsHigh Energy Physics::LatticeNuclear TheoryHigh Energy Physics::PhenomenologyScalar (mathematics)LambdaLambda baryonUnitary stateOmegaUncorrelatedQuantum mechanicsHigh Energy Physics::ExperimentChirality (chemistry)Interaction rangePhysical Review C
researchProduct

Scalar ΛN and ΛΛ interactions within a chiral unitary approach

2008

We study the central part of the ΛN potential by considering the correlated and uncorrelated two-meson exchange besides the ω exchange contribution. The correlated two-meson is evaluated in a chiral unitary approach. We find that a short range repulsion is generated by the correlated two-meson potential which also produces an attraction in the intermediate distance region. The uncorrelated two-meson exchange produces a sizable attraction in all cases which is counterbalanced by ω exchange contribution.

PhysicsRange (particle radiation)UnitarityHigh Energy Physics::LatticeIntermediate distanceNuclear TheoryHigh Energy Physics::PhenomenologyScalar (mathematics)Unitary stateAttractionUncorrelatedQuantum electrodynamicsQuantum mechanicsHigh Energy Physics::ExperimentPi interactionNuclear Experiment
researchProduct

Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam

2011

The T2K experiment observes indications of $\nu_\mu\rightarrow \nu_e$ appearance in data accumulated with $1.43\times10^{20}$ protons on target. Six events pass all selection criteria at the far detector. In a three-flavor neutrino oscillation scenario with $|\Delta m_{23}^2|=2.4\times10^{-3}$ eV$^2$, $\sin^2 2\theta_{23}=1$ and $\sin^2 2\theta_{13}=0$, the expected number of such events is 1.5$\pm$0.3(syst.). Under this hypothesis, the probability to observe six or more candidate events is 7$\times10^{-3}$, equivalent to 2.5$\sigma$ significance. At 90% C.L., the data are consistent with 0.03(0.04)$<\sin^2 2\theta_{13}<$ 0.28(0.34) for $\delta_{\rm CP}=0$ and a normal (inverted) hierarchy.

Particle physicsFOS: Physical sciencesGeneral Physics and Astronomyddc:500.2CHOOZ01 natural sciencesParticle identificationHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)neutrino14.60.Pq 13.15.+g 25.30.Pt 95.55.Vj0103 physical sciencesneutrino oscillationMuon neutrino[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNeutrino oscillationGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)ComputingMilieux_MISCELLANEOUSPhysicsNOνATribimaximal mixinghep-ex010308 nuclear & particles physicsT2K experimentFísicaT2K Collaborationparticle identificationElectron neutrinoexperimental resultsPhysical Review Letters
researchProduct

First Muon-Neutrino Disappearance Study with an Off-Axis Beam

2012

We report a measurement of muon-neutrino disappearance in the T2K experiment. The 295-km muon-neutrino beam from Tokai to Kamioka is the first implementation of the off-axis technique in a long-baseline neutrino oscillation experiment. With data corresponding to 1.43 × 10(20) protons on target, we observe 31 fully-contained single μ-like ring events in Super-Kamiokande, compared with an expectation of 104 ± 14(syst) events without neutrino oscillations. The best-fit point for two-flavor νμ → ντ oscillations is sin 2(2θ(23)) = 0.98 and |Δm(2)(32)| = 2.65 × 10(−3) eV2. The boundary of the 90% confidence region includes the points (sin2 (2θ(23)), |Δm(2)(32)|) = (1.0, 3.1 × 10(−3) eV2), (0.84, …

Nuclear and High Energy Physics530 PhysicsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesddc:500.27. Clean energy01 natural sciencesNeutrino scatteringHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Muon neutrino010306 general physicsNeutrino oscillationQCPhysics010308 nuclear & particles physicshep-exHigh Energy Physics::PhenomenologyT2K experimentFísicaPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentBeam (structure)
researchProduct

The T2K Experiment

2011

The T2K experiment is a long-baseline neutrino oscillation experiment. Its main goal is to measure the last unknown lepton sector mixing angle {\theta}_{13} by observing {\nu}_e appearance in a {\nu}_{\mu} beam. It also aims to make a precision measurement of the known oscillation parameters, {\Delta}m^{2}_{23} and sin^{2} 2{\theta}_{23}, via {\nu}_{\mu} disappearance studies. Other goals of the experiment include various neutrino cross section measurements and sterile neutrino searches. The experiment uses an intense proton beam generated by the J-PARC accelerator in Tokai, Japan, and is composed of a neutrino beamline, a near detector complex (ND280), and a far detector (Super-Kamiokande)…

Nuclear and High Energy PhysicsParticle physicsSterile neutrinoPhysics - Instrumentation and DetectorsNeutrino oscillationPhysics::Instrumentation and Detectorsddc:500.27. Clean energy01 natural sciencesHigh Energy Physics - ExperimentNuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Long baseline[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Neutrinos010306 general physicsNeutrino oscillationphysics.ins-detInstrumentationQCPhysicsT2Khep-ex010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyT2K experimentNeutrinos; Neutrino oscillation; Long baseline; T2K; J-PARC; Super-KamiokandeFísicaNeutrino detectorJ-PARCHigh Energy Physics::ExperimentJ-PARCSuper-KamiokandeNeutrinoSuper-KamiokandeLepton
researchProduct

Measurements of the T2K neutrino beam properties using the INGRID on-axis near detector

2012

Precise measurement of neutrino beam direction and intensity was achieved based on a new concept with modularized neutrino detectors. INGRID (Interactive Neutrino GRID) is an on-axis near detector for the T2K long baseline neutrino oscillation experiment. INGRID consists of 16 identical modules arranged in horizontal and vertical arrays around the beam center. The module has a sandwich structure of iron target plates and scintillator trackers. INGRID directly monitors the muon neutrino beam profile center and intensity using the number of observed neutrino events in each module. The neutrino beam direction is measured with accuracy better than 0.4 mrad from the measured profile center. The …

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsNeutrino oscillationPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical Phenomenaon-axis near detectorFOS: Physical sciencesddc:500.201 natural sciences7. Clean energyNeutrino oscillation; on-axis near detectorneutrino oscillation; neutrino detector; wavelength shifting fiber; t2k; extruded scintillator; neutrino beamNeutrino detectorNuclear physicsNeutrino beamneutrino beam0103 physical sciencesExtruded scintillatorMuon neutrinoneutrino oscillation[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNeutrino oscillationInstrumentationT2KPhysicst2k010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyNeutrino oscillation; T2K; Neutrino beam; Neutrino detector; Extruded scintillator; Wavelength shifting fiberT2K experimentextruded scintillatorFísicaInstrumentation and Detectors (physics.ins-det)Neutrino detectorneutrino detectorWavelength shiftingfiberMeasurements of neutrino speedPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentNeutrinoBeam (structure)Leptonwavelength shifting fiber
researchProduct

Scalar Lambda N and Lambda Lambda interaction in a chiral unitary approach

2006

We study the central part of Lambda N and Lambda Lambda potential by considering the correlated and uncorrelated two-meson exchange besides the omega exchange contribution. The correlated two-meson is evaluated in a chiral unitary approach. We find that a short range repulsion is generated by the correlated two-meson potential which also produces an attraction in the intermediate distance region. The uncorrelated two-meson exchange produces a sizeable attraction in all cases which is counterbalanced by omega exchange contribution.

Nuclear Theory (nucl-th)Nuclear TheoryHigh Energy Physics::LatticeNuclear TheoryHigh Energy Physics::PhenomenologyFOS: Physical sciencesFísicaHigh Energy Physics::Experiment
researchProduct