0000000000482011

AUTHOR

K. B. Liaskos

showing 1 related works from this author

Implicit analytic solutions for a nonlinear fractional partial differential beam equation

2020

Abstract Analytic solutions in implicit form are derived for a nonlinear partial differential equation (PDE) with fractional derivative elements, which can model the dynamics of a deterministically excited Euler-Bernoulli beam resting on a viscoelastic foundation. Specifically, the initial-boundary value problem for the corresponding PDE is reduced to an initial value problem for a nonlinear ordinary differential equation in a Hilbert space. Next, by employing the cosine and sine families of operators, a variation of parameters representation of the solution map is introduced. Due to the presence of a nonlinear term, a local fixed point theorem is employed to prove the local existence and u…

Numerical AnalysisPartial differential equationApplied MathematicsCosine and sine families of operatorHilbert spacePartial differential equationFractional derivativeVariation of parameters01 natural sciencesImplicit analytic solution010305 fluids & plasmasFractional calculusNonlinear systemsymbols.namesakeModeling and Simulation0103 physical sciencessymbolsPartial derivativeInitial value problemApplied mathematicsBoundary value problem010306 general physicsMathematicsNonlinear beam
researchProduct