0000000000485363
AUTHOR
Juan D. Gil
Application of solar energy to seawater desalination in a pilot system based on vacuum multi-effect membrane distillation
Abstract The evaluation of a novel solar seawater desalination system implemented at the University of Almeria (Spain) is presented. It integrates a solar thermal field based on static collectors and a thermal desalination system based on the vacuum multi-effect membrane distillation technology. The distillation unit has a particular innovation to increase its thermal performance, using a seawater flow to condense the steam and preheat the feed. Experiments were made under different environmental conditions to assess the role of the thermal storage system for minimizing the effect of disturbances in solar radiation. Thermal energy could be delivered at a stable temperature to the distillati…
Prediction models to analyse the performance of a commercial-scale membrane distillation unit for desalting brines from RO plants
Abstract Desalting brines from Reverse Osmosis (RO) plants is one of the most promising applications of Membrane Distillation (MD) systems. The development of accurate models to predict MD system performances plays a significant role in the design of this kind of industrial applications. In this paper, a commercial-scale Permeate-Gap Membrane Distillation (PGMD) module was modelled by means of two different approaches: Response Surface Methodology (RSM) and Artificial Neural Networks (ANN). Condenser inlet temperature, evaporator inlet temperature, feed flow rate and feed water salt concentration were selected as inputs of the model, while permeate flux and Specific Thermal Energy Consumpti…