Orthorhombic boron oxide under pressure: in situ study by X-ray diffraction and Raman scattering
High-pressure phase of boron oxide, orthorhombic \b{eta}-B2O3, has been studied in situ by synchrotron X-ray diffraction to 22 GPa and Raman scattering to 46 GPa at room temperature. The bulk modulus of \b{eta}-B2O3 has been found to be 169(3) GPa that is in good agreement with our ab initio calculations. Raman and IR spectra of \b{eta}-B2O3 have been measured at ambient pressure, all experimentally observed bands have been attributed to the theoretically calculated ones, and the mode assignment has been performed. Based on the data on Raman shift as a function of pressure, combined with equation-of-state data, the Gr\"uneisen parameters of all experimentally observed Raman bands have been …
Discovery of new boron-rich chalcogenides: Orthorhombic B6X (X=S, Se)
The authors thank T. Chauveau (LSPM) for help with Rietveld analysis, A. Jamali (LRCS) for assistance with SEM measurements, and Drs. Y. Tange (SPring-8) and N. Guignot (SOLEIL) for help in synchrotron experiments that were carried out during beamtimes allocated to proposals 2017A1047 & 2018A1121 at SPring-8 and proposal 20170092 at SOLEIL. Ab initio calculations have been performed using Rurik and Arkuda supercomputers. This work was financially supported by the European Union’s Horizon 2020 Research and Innovation Programme under Flintstone2020 project (grant agreement No. 689279). Z.W. thanks the National Science Foundation of China (grant No. 11604159). A.R.O. thanks the Russian Ministr…
High-pressure synthesis of boron-rich chalcogenides B12S and B12Se
The authors thank Drs. I. Dovgaliuk and T. Chauveau for assistance with Rietveld analysis; and Drs. V. Bushlya and A. Jamali for help with EDX/SEM measurements. This work was financially supported by the European Union's Horizon 2020 Research and Innovation Program under Flintstone2020 project (grant agreement No 689279).