0000000000495374

AUTHOR

Bipasha Chakraborty

showing 3 related works from this author

Improved Vcs determination using precise lattice QCD form factors for D→Kℓν

2021

We provide a 0.8%-accurate determination of Vcs from combining experimental results for the differential rate of D→K semileptonic decays with precise form factors that we determine from lattice QCD. This is the first time that Vcs has been determined with an accuracy that allows its difference from 1 to be seen. Our lattice QCD calculation uses the highly improved staggered quark (HISQ) action for all valence quarks on gluon field configurations generated by the MILC Collaboration that include the effect of u, d, s, and c HISQ quarks in the sea. We use eight gluon field ensembles with five values of the lattice spacing ranging from 0.15 fm to 0.045 fm and include results with physical u/d q…

QuarkPhysicsParticle physics010308 nuclear & particles physicsBranching fractionHigh Energy Physics::LatticeHigh Energy Physics::PhenomenologyElectroweak interactionLattice QCD01 natural sciencesStandard ModelLattice constant0103 physical sciencesHigh Energy Physics::Experiment010306 general physicsGluon fieldLeptonPhysical Review
researchProduct

The anomalous magnetic moment of the muon in the Standard Model

2020

We are very grateful to the Fermilab Directorate and the Fermilab Theoretical Physics Department for their financial and logistical support of the first workshop of the Muon g -2 Theory Initiative (held near Fermilab in June 2017) [123], which was crucial for its success, and indeed for the successful start of the Initiative. Financial support for this workshop was also provided by the Fermilab Distinguished Scholars program, the Universities Research Association through a URA Visiting Scholar award, the Riken Brookhaven Research Center, and the Japan Society for the Promotion of Science under Grant No. KAKEHNHI-17H02906. We thank Shoji Hashimoto, Toru Iijima, Takashi Kaneko, and Shohei Nis…

Standard ModelNuclear Theorymagnetichigher-orderPhysics beyond the Standard ModelGeneral Physics and Astronomynucl-ex01 natural sciencesHigh Energy Physics - ExperimentSubatomär fysikHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Subatomic Physicsquantum electrodynamics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Vacuum polarizationNuclear Experiment (nucl-ex)Nuclear Experimentfundamental constant: fine structurePhysicsQuantum chromodynamicsQEDAnomalous magnetic dipole momentnew physicsJ-PARC LabHigh Energy Physics - Lattice (hep-lat)Electroweak interactionlattice field theoryParticle Physics - Latticehep-phObservableHigh Energy Physics - PhenomenologyNuclear Physics - TheoryParticle Physics - ExperimentParticle physics[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]nucl-th530 Physicsdispersion relationg-2Lattice field theoryFOS: Physical scienceshep-latnonperturbative[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]530Muon magnetic momentNuclear Theory (nucl-th)High Energy Physics - Latticemuonquantum chromodynamics0103 physical sciencesddc:530Nuclear Physics - Experiment010306 general physicsactivity reportperturbation theoryParticle Physics - PhenomenologyMuonmuon: magnetic momentelectroweak interaction[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]hep-ex010308 nuclear & particles physicsvacuum polarization: hadronicHigh Energy Physics::Phenomenologyphoton photon: scatteringanomalous magnetic moment[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::ExperimentPhysics Reports
researchProduct

Improved Vcs determination using precise lattice QCD form factors for D → Kℓν

2021

We provide a 0.8%-accurate determination of \ud V\ud c\ud s\ud from combining experimental results for the differential rate of \ud D\ud →\ud K\ud semileptonic decays with precise form factors that we determine from lattice QCD. This is the first time that \ud V\ud c\ud s\ud has been determined with an accuracy that allows its difference from 1 to be seen. Our lattice QCD calculation uses the Highly Improved Staggered Quark (HISQ) action for all valence quarks on gluon field configurations generated by the MILC collaboration that include the effect of \ud u\ud , \ud d\ud , \ud s\ud and \ud c\ud HISQ quarks in the sea. We use eight gluon field ensembles with five values of the lattice spacin…

High Energy Physics::LatticeHigh Energy Physics::PhenomenologyHigh Energy Physics::Experiment
researchProduct