0000000000495997

AUTHOR

C. Petrone

showing 8 related works from this author

Precision mass measurements of Fe67 and Co69,70 : Nuclear structure toward N=40 and impact on r -process reaction rates

2020

Accurate mass measurements of neutron-rich iron and cobalt isotopes $^{67}\mathrm{Fe}$ and $^{69,70}\mathrm{Co}$ have been realized with the JYFLTRAP double Penning-trap mass spectrometer. With novel ion-manipulation techniques, the masses of the $^{69,70}\mathrm{Co}$ ground states and the $1/{2}^{\ensuremath{-}}$ isomer in $^{69}\mathrm{Co}$ have been extracted for the first time. The measurements remove ambiguities in the previous mass values and yield a smoother trend on the mass surface, extending it beyond $N=40$. The moderate $N=40$ subshell gap has been found to weaken below $^{68}\mathrm{Ni}$, a region known for shape coexistence and increased collectivity. The excitation energy for…

Physics010308 nuclear & particles physicsNuclear structureMass spectrometry7. Clean energy01 natural sciencesIntruder stateReaction rate13. Climate actionYield (chemistry)0103 physical sciencesr-processAtomic physics010306 general physicsExcitationEnergy (signal processing)Physical Review C
researchProduct

New reaction rates for the destruction of $^7$Be during big bang nucleosynthesis measured at CERN/n_TOF and their implications on the cosmological li…

2019

New measurements of the7Be(n,α)4He and7Be(n,p)7Li reaction cross sections from thermal to keV neutron energies have been recently performed at CERN/n_TOF. Based on the new experimental results, astrophysical reaction rates have been derived for both reactions, including a proper evaluation of their uncertainties in the thermal energy range of interest for big bang nucleosynthesis studies. The new estimate of the7Be destruction rate, based on these new results, yields a decrease of the predicted cosmological7Li abundance insufficient to provide a viable solution to the cosmological lithium problem.

PhysicsRange (particle radiation)Large Hadron Collidern_TOF 7Be big bang nucleosynthesis cosmological lithium problem010308 nuclear & particles physicsPhysicsQC1-999chemistry.chemical_element[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciencesReaction rateNuclear physicsBig Bang nucleosynthesischemistry13. Climate action0103 physical sciencesThermalNeutronLithiumNuclear Physics - Experiment010306 general physicsNuclear Experiment
researchProduct

Fission and Quasi-Fission Dynamics Near the Coulomb Barrier: $\gamma$ Rays as Probe for their Timescale

2018

International audience; The overlap in the mass symmetric region of the reaction products from fusion-fission and quasi-fission complicates the assignment of symmetric events to complete fusion on the basis of the mass distribution alone. Additional observables, besides mass distribution, should be used. The method proposed here relies on the fact that fusion-fission and quasifission are characterized by a different timescale. Within this framework we performed a detailed study to find out if timescales can be probed via angular momentum as measured via γ rays multiplicity. The proof of principle was carried out by measuring the γ rays in coincidence with two fragments in the reaction 32S +…

PhysicsFissionExperiment-NuclDynamics (mechanics)Theory-NuclCoulomb barrierAtomic physics[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Experiment
researchProduct

Gamma rays as probe of fission and quasi-fission dynamics in the reaction 32S + 197Au near the Coulomb barrier

2017

International audience; Compound nucleus fission and quasi-fission are both binary decay channels whose common properties make the experimental separation between them difficult. A way to achieve this separation could be to probe the angular momentum of the binary fragments. This can be done detecting gamma rays in coincidence with the two fragments. As a case study, the reaction 32S + 197Au near the Coulomb barrier has been performed at the Tandem ALTO facility at IPN ORSAY. ORGAM and PARIS, two different gamma detectors arrays, are coupled with the CORSET detector, a two-arm time-of-flight spectrometer. TOF-TOF data were analyzed to reconstruct the mass-energy distribution of the primary …

PhysicsHistoryAngular momentumSpectrometer010308 nuclear & particles physicsFissionDetectorgamma radiationGamma rayCoulomb barriergammasäteily[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesCoincidenceComputer Science ApplicationsEducationNuclear physicsnuclear fissionfissionuclear physics0103 physical sciencesMultiplicity (chemistry)010306 general physicsydinfysiikkaNuclear Experiment
researchProduct

Mass measurements towards doubly magic Ni-78 : Hydrodynamics versus nuclear mass contribution in core-collapse supernovae

2022

International audience; We report the first high-precision mass measurements of the neutron-rich nuclei 74,75Ni and the clearly identified ground state of 76Cu, along with a more precise mass-excess value of 78Cu, performed with the double Penning trap JYFLTRAP at the Ion Guide Isotope Separator On-Line (IGISOL) facility. These new results lead to a quantitative estimation of the quenching for the N=50 neutron shell gap. The impact of this shell quenching on core-collapse supernova dynamics is specifically tested using a dedicated statistical equilibrium approach that allows a variation of the mass model independent of the other microphysical inputs. We conclude that the impact of nuclear m…

NUCLEOSYNTHESISIONSCore-collapse supernovaNuclear and High Energy PhysicsScience & TechnologyIMPACTPhysicsPenning trapR-PROCESSneutronitAstronomy & Astrophysics[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]114 Physical sciencesSTATEPhysics Particles & FieldsPhysics NuclearSPECTROMETRYPhysical SciencesISOTOPESNuclear massNuclear Physics - ExperimentydinfysiikkaShell gap
researchProduct

Precision mass measurements of $^{67}$Fe and $^{69,70}$Co : Nuclear structure toward N=40 and impact on r -process reaction rates

2020

International audience; Accurate mass measurements of neutron-rich iron and cobalt isotopes Fe67 and Co69,70 have been realized with the JYFLTRAP double Penning-trap mass spectrometer. With novel ion-manipulation techniques, the masses of the Co69,70 ground states and the 1/2− isomer in Co69 have been extracted for the first time. The measurements remove ambiguities in the previous mass values and yield a smoother trend on the mass surface, extending it beyond N=40. The moderate N=40 subshell gap has been found to weaken below Ni68, a region known for shape coexistence and increased collectivity. The excitation energy for the 1/2− intruder state in Co69 has been determined for the first tim…

[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Structure
researchProduct

Precision mass measurements of Fe 67 and Co 69 , 70 : Nuclear structure toward N = 40 and impact on r -process reaction rates

Physical Review C
researchProduct

Precision mass measurements of 67Fe and 69,70Co: Nuclear structure toward N = 40 and impact on r-process reaction rates

2020

Accurate mass measurements of neutron-rich iron and cobalt isotopes 67Fe and 69,70Co have been realized with the JYFLTRAP double Penning-trap mass spectrometer. With novel ion-manipulation techniques, the masses of the 69,70Co ground states and the 1/2− isomer in 69Co have been extracted for the first time. The measurements remove ambiguities in the previous mass values and yield a smoother trend on the mass surface, extending it beyond N=40. The moderate N=40 subshell gap has been found to weaken below 68Ni, a region known for shape coexistence and increased collectivity. The excitation energy for the 1/2− intruder state in 69Co has been determined for the first time and is compared to lar…

energy levels and level densitiesnuclear astrophysicsr processhiukkasfysiikkaydinfysiikkanuclear structure and decaysbinding energy and masses
researchProduct