0000000000496288

AUTHOR

Juan I. Yuz

A port-Hamiltonian Fluid-Structure Interaction Model for the Vocal folds ⁎ ⁎This work was supported by CONICYT-PFCHA/2017-21170472, and AC3E CONICYT-Basal Project FB-0008.

Abstract Fluid-structure interaction models are of special interest for studying the energy transfer between the moving fluid and the mechanical structure in contact. The vocal folds are an example of a fluid-structure system, where the mechanical structure is usually modeled as a mass-spring-damper system. In particular, the estimation of the collision forces of the vocal folds is of high interest in the diagnosis of phonotraumatic voice pathologies. In this context, the port-Hamiltonian modeling framework focuses on the energy flux in the model and the interacting forces. In this paper, we develop a port-Hamiltonian fluid-structure interaction model based on the interconnection methodolog…

research product

Energy-based fluid–structure model of the vocal folds

AbstractLumped elements models of vocal folds are relevant research tools that can enhance the understanding of the pathophysiology of many voice disorders. In this paper, we use the port-Hamiltonian framework to obtain an energy-based model for the fluid–structure interactions between the vocal folds and the airflow in the glottis. The vocal fold behavior is represented by a three-mass model and the airflow is described as a fluid with irrotational flow. The proposed approach allows to go beyond the usual quasi-steady one-dimensional flow assumption in lumped mass models. The simulation results show that the proposed energy-based model successfully reproduces the oscillations of the vocal …

research product