0000000000498859

AUTHOR

E. Del Pino Rosendo

showing 6 related works from this author

Constraints on ultra-high-energy cosmic ray sources from a search for neutrinos above 10 PeV with IceCube

2016

We report constraints on the sources of ultra-high-energy cosmic ray (UHECR) above $10^{9}$ GeV, based on an analysis of seven years of IceCube data. This analysis efficiently selects very high energy neutrino-induced events which have deposited energies from $\sim 10^6$ GeV to above $10^{11}$ GeV. Two neutrino-induced events with an estimated deposited energy of $(2.6 \pm 0.3) \times 10^6$ GeV, the highest neutrino energies observed so far, and $(7.7 \pm 2.0) \times 10^5$ GeV were detected. The atmospheric background-only hypothesis of detecting these events is rejected at 3.6$\sigma$. The hypothesis that the observed events are of cosmogenic origin is also rejected at $>$99% CL because of…

FLUXSELECTIONFERMI-LATActive galactic nucleusCosmology and Nongalactic Astrophysics (astro-ph.CO)Astrophysics::High Energy Astrophysical PhenomenaGeneral Physics and AstronomyFOS: Physical sciencesCosmic rayAstrophysicsParameter space7. Clean energy01 natural sciencesCOSMOGENIC NEUTRINOS; TRACK RECONSTRUCTION; FERMI-LAT; BURSTS; SPECTRUM; MODEL; FLUX; TELESCOPES; SELECTION; EMISSIONPulsar0103 physical sciencesTRACK RECONSTRUCTIONBURSTSddc:550Ultrahigh energy010303 astronomy & astrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)SPECTRUM010308 nuclear & particles physicsStar formationCOSMOGENIC NEUTRINOSAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyMODELPhysics and Astronomy13. Climate actionTELESCOPESHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaEMISSIONEnergy (signal processing)Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Astrophysical neutrinos and cosmic rays observed by IceCube

2018

The core mission of the IceCube neutrino observatory is to study the origin and propagation of cosmic rays. IceCube, with its surface component IceTop, observes multiple signatures to accomplish this mission. Most important are the astrophysical neutrinos that are produced in interactions of cosmic rays, close to their sources and in interstellar space. IceCube is the first instrument that measures the properties of this astrophysical neutrino flux and constrains its origin. In addition, the spectrum, composition, and anisotropy of the local cosmic-ray flux are obtained from measurements of atmospheric muons and showers. Here we provide an overview of recent findings from the analysis of Ic…

Atmospheric ScienceAstrophysics::High Energy Astrophysical PhenomenaAerospace EngineeringCosmic rayAstrophysicsPhysics and Astronomy(all)7. Clean energy01 natural sciencesIceCube Neutrino ObservatoryIceCubecosmic raysObservatory0103 physical sciencesNeutrinos010303 astronomy & astrophysicsCosmic raysPhysicsMuon010308 nuclear & particles physicsGamma rayAstrophysics::Instrumentation and Methods for AstrophysicsneutrinosAstronomyAstronomy and AstrophysicsGeophysicsCosmic rays; IceCube; Neutrinos; Aerospace Engineering; Space and Planetary ScienceNeutrino detector13. Climate actionSpace and Planetary SciencePhysique des particules élémentairesGeneral Earth and Planetary SciencesNeutrinoNeutrino astronomy
researchProduct

The IceCube realtime alert system

2016

Following the detection of high-energy astrophysical neutrinos in 2013, their origin is still unknown. Aiming for the identification of an electromagnetic counterpart of a rapidly fading source, we have implemented a realtime analysis framework for the IceCube neutrino observatory. Several analyses selecting neutrinos of astrophysical origin are now operating in realtime at the detector site in Antarctica and are producing alerts to the community to enable rapid follow-up observations. The goal of these observations is to locate the astrophysical objects responsible for these neutrino signals. This paper highlights the infrastructure in place both at the South Pole detector site and at IceC…

HIGH-ENERGY NEUTRINOSTELESCOPEAstrophysics::High Energy Astrophysical PhenomenaMulti-messenger astronomy; Neutrino astronomy; Neutrino detectors; Transient sources; Astronomy and AstrophysicspoleFOS: Physical sciences01 natural sciencesIceCubelaw.inventionIceCube Neutrino ObservatoryTelescopeSEARCHESCORE-COLLAPSE SUPERNOVAElawObservatory0103 physical sciencesMulti-messenger astronomysiteNeutrino detectors010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsbackgroundEvent (computing)Astrophysics::Instrumentation and Methods for AstrophysicsAstronomyAstronomy and AstrophysicsPERFORMANCEsensitivityTransient sourcesobservatoryIdentification (information)electromagneticPhysics and AstronomyNeutrino detectorNeutrino astronomyddc:540High Energy Physics::ExperimentNeutrinoNeutrino astronomyAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsFOLLOW-UPAstroparticle Physics
researchProduct

Neutrino oscillation studies with IceCube-DeepCore

2016

IceCube, a gigaton-scale neutrino detector located at the South Pole, was primarily designed to search for astrophysical neutrinos with energies of PeV and higher. This goal has been achieved with the detection of the highest energy neutrinos to date. At the other end of the energy spectrum, the DeepCore extension lowers the energy threshold of the detector to approximately 10 GeV and opens the door for oscillation studies using atmospheric neutrinos. An analysis of the disappearance of these neutrinos has been completed, with the results produced being complementary with dedicated oscillation experiments. Following a review of the detector principle and performance, the method used to make…

Physics::Instrumentation and DetectorsSolar neutrinopoleinteraction [neutrino nucleon]PINGU01 natural sciences7. Clean energyneutrino nucleon: interactionIceCubeenergy: thresholdAstronomi astrofysik och kosmologineutrino: atmosphereAstronomy Astrophysics and Cosmologydetector [neutrino]Physicsneutrino: energy spectrumoscillation [neutrino]Astrophysics::Instrumentation and Methods for Astrophysicsatmosphere [neutrino]threshold [energy]mass difference [neutrino]Cosmic neutrino backgroundneutrino: detectorNeutrino detectorPhysique des particules élémentairesMeasurements of neutrino speedNeutrinoperformanceNuclear and High Energy PhysicsParticle physicsAstrophysics::High Energy Astrophysical Phenomenaneutrino: mass differenceddc:500.2530neutrino: energySOUTH-POLE0103 physical sciencesddc:530010306 general physicsNeutrino oscillation010308 nuclear & particles physicsICEenergy spectrum [neutrino]Solar neutrino problemneutrino: mixing anglePhysics and Astronomyenergy [neutrino]High Energy Physics::Experimentneutrino: oscillationNeutrino astronomyMATTERSYSTEMmixing angle [neutrino]experimental results
researchProduct

Search for sterile neutrino mixing using three years of IceCube DeepCore data

2017

Physical review / D 95(11), 112002(2017). doi:10.1103/PhysRevD.95.112002

FLUXSterile neutrinoParticle physicsPhysics and Astronomy (miscellaneous)Physics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciences01 natural sciences530High Energy Physics - ExperimentOSCILLATION EXPERIMENTSHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesTRACK RECONSTRUCTIONddc:530010306 general physicsNeutrino oscillationPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAstronomySolar neutrino problemLINE-EXPERIMENT-SIMULATORMODELHigh Energy Physics - PhenomenologyNeutrino detectorPhysics and AstronomyMeasurements of neutrino speedHigh Energy Physics::ExperimentNeutrino astronomyNeutrino
researchProduct

Searches for Sterile Neutrinos with the IceCube Detector

2016

The IceCube neutrino telescope at the South Pole has measured the atmospheric muon neutrino spectrum as a function of zenith angle and energy in the approximate 320 GeV to 20 TeV range, to search for the oscillation signatures of light sterile neutrinos. No evidence for anomalous $\nu_\mu$ or $\bar{\nu}_\mu$ disappearance is observed in either of two independently developed analyses, each using one year of atmospheric neutrino data. New exclusion limits are placed on the parameter space of the 3+1 model, in which muon antineutrinos would experience a strong MSW-resonant oscillation. The exclusion limits extend to $\mathrm{sin}^2 2\theta_{24} \leq$ 0.02 at $\Delta m^2 \sim$ 0.3 $\mathrm{eV}^…

Particle physicsSterile neutrinoAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciencesHigh Energy Physics - ExperimentMiniBooNENuclear physicsHigh Energy Physics - Experiment (hep-ex)Physics and Astronomy (all)0103 physical sciencesOSCILLATIONSddc:550Muon neutrino010306 general physicsNeutrino oscillationZenithHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsMuon010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyMODELNeutrino detectorPhysics and Astronomy13. Climate actionHigh Energy Physics::ExperimentAstrophysics - High Energy Astrophysical PhenomenaEnergy (signal processing)SYSTEM
researchProduct