0000000000499717

AUTHOR

M. G. Karkut

showing 2 related works from this author

Domain-Enhanced Interlayer Coupling in Ferroelectric/Paraelectric Superlattices

2004

We investigate the ferroelectric phase transition and domain formation in a periodic superlattice consisting of alternate ferroelectric (FE) and paraelectric (PE) layers of nanometric thickness. We find that the polarization domains formed in the different FE layers can interact with each other via the PE layers. By coupling the electrostatic equations with those obtained by minimizing the Ginzburg-Landau functional we calculate the critical temperature of transition Tc as a function of the FE/PE superlattice wavelength and quantitatively explain the recent experimental observation of a thickness dependence of the ferroelectric transition temperature in KTaO3/KNbO3 strained-layer superlatti…

Condensed Matter - Materials SciencePhase transitionPotassium niobateMaterials scienceCondensed matter physicsSuperlatticeTransition temperatureMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and AstronomyDielectricPolarization (waves)FerroelectricityCondensed Matter - Other Condensed MatterCondensed Matter::Materials Sciencechemistry.chemical_compoundchemistryGinzburg–Landau theoryOther Condensed Matter (cond-mat.other)Physical Review Letters
researchProduct

Size effects of static and dynamic polarization in ferroelectric thin film multilayers

2001

Abstract A thermodynamic theory for the calculation of static and dynamic polarization profiles of ferroelectric thin film multilayers is developed. The free energy functional is written down using a multilayer model in which c-domain layers of the ferroelectric material alternate with a-domain layers of a second ferroelectric materials. We assume that the interfaces are perfectly sharp and that the polarization at these boundaries is zero. The equilibrium polarization profile, its temperature and thickness dependencies were determined from the solutions of the Euler-Lagrange equations. A thickness induced ferroelectric phase transition is shown to exist and its transition temperature and c…

Phase transitionMaterials scienceCondensed matter physicsSpacetimebusiness.industryTransition temperatureCondensed Matter PhysicsPolarization (waves)FerroelectricityElectronic Optical and Magnetic MaterialsCondensed Matter::Materials ScienceOpticsControl and Systems EngineeringMaterials ChemistryCeramics and CompositesFerroelectric thin filmsWave vectorElectrical and Electronic EngineeringbusinessEnergy functionalIntegrated Ferroelectrics
researchProduct