0000000000501482

AUTHOR

Th. Walther

showing 4 related works from this author

A gas-jet apparatus for high-resolution laser spectroscopy on the heaviest elements at SHIP

2020

© 2019 Elsevier B.V. Laser spectroscopy enables the determination of fundamental atomic and nuclear properties with high precision. In view of the low production rates of the heaviest elements, a high total efficiency is a crucial requirement for any experimental setup to be used in on-line experiments. The setup requires the use of gas stopping techniques to slow down the radionuclides of interest. In previous studies laser spectroscopy was performed inside a gas-filled stopping cell with a limited spectral resolution of a few GHz. Collisional broadening inside stopping cells ultimately limits the precision of laser spectroscopic studies and hampers in particular hyperfine spectroscopy. Th…

Nuclear and High Energy PhysicsJet (fluid)Materials science010308 nuclear & particles physicsbusiness.industryResolution (electron density)chemistry.chemical_elementLaser7. Clean energy01 natural scienceslaw.inventionLaser linewidthOpticschemistrylaw0103 physical sciencesNobeliumSpectral resolution010306 general physicsSpectroscopybusinessInstrumentationHyperfine structure
researchProduct

Developments for resonance ionization laser spectroscopy of the heaviest elements at SHIP

2016

Abstract The experimental determination of atomic levels and the first ionization potential of the heaviest elements ( Z ⩾ 100 ) is key to challenge theoretical predictions and to reveal changes in the atomic shell structure. These elements are only artificially produced in complete-fusion evaporation reactions at on-line facilities such as the GSI in Darmstadt at a rate of, at most, a few atoms per second. Hence, highly sensitive spectroscopic methods are required. Laser spectroscopy is one of the most powerful and valuable tools to investigate atomic properties. In combination with a buffer-gas filled stopping cell, the Radiation Detected Resonance Ionization Spectroscopy (RADRIS) techniq…

YtterbiumNuclear and High Energy Physics010308 nuclear & particles physicschemistry.chemical_elementInstrumental chemistry01 natural sciencesAtmospheric-pressure laser ionizationchemistryExcited state0103 physical sciencesPhysics::Atomic PhysicsNobeliumLaser-induced breakdown spectroscopyIonization energyAtomic physics010306 general physicsSpectroscopyInstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Precision Measurement of the First Ionization Potential of Nobelium

2018

One of the most important atomic properties governing an element's chemical behavior is the energy required to remove its least-bound electron, referred to as the first ionization potential. For the heaviest elements, this fundamental quantity is strongly influenced by relativistic effects which lead to unique chemical properties. Laser spectroscopy on an atom-at-a-time scale was developed and applied to probe the optical spectrum of neutral nobelium near the ionization threshold. The first ionization potential of nobelium is determined here with a very high precision from the convergence of measured Rydberg series to be 6.626 21±0.000 05  eV. This work provides a stringent benchmark for st…

ENERGIESGeneral Physics and Astronomychemistry.chemical_elementElectron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energysymbols.namesakeIonizationEQUAL-TO 1040103 physical sciencesLAWRENCIUMBUFFER GASPhysics::Atomic PhysicsSUPERHEAVY ELEMENTSLASER SPECTROSCOPY010306 general physicsSpectroscopyPhysicsNEUTRAL YTTERBIUM010308 nuclear & particles physicsHEAVIEST ELEMENTSchemistryRydberg formulasymbolsEXCITED-LEVELSNobeliumACTINIDESIonization energyAtomic physicsRelativistic quantum chemistryLawrencium
researchProduct

Laser cooling of relativistic heavy-ion beams for FAIR

2015

Laser cooling is a powerful technique to reduce the longitudinal momentum spread of stored relativistic ion beams. Based on successful experiments at the experimental storage ring at GSI in Darmstadt, of which we show some important results in this paper, we present our plans for laser cooling of relativistic ion beams in the future heavy-ion synchrotron SIS100 at the Facility for Antiproton and Ion Research in Darmstadt.

PhysicsCondensed Matter PhysicsAtomic and Molecular Physics and OpticsSynchrotronCharged particlelaw.inventionIonNuclear physicsPhysics::Plasma PhysicslawAntiprotonLaser coolingAntimatterPhysics::Accelerator PhysicsFacility for Antiproton and Ion ResearchPhysics::Atomic PhysicsNuclear ExperimentMathematical PhysicsStorage ringPhysica Scripta
researchProduct