0000000000505172

AUTHOR

P. Karvonen

Total Absorption Spectroscopy Study of $^{92}$Rb Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape

The antineutrino spectra measured in recent experiments at reactors are inconsistent with calculations based on the conversion of integral beta spectra recorded at the ILL reactor. $^{92}$Rb makes the dominant contribution to the reactor spectrum in the 5-8 MeV range but its decay properties are in question. We have studied $^{92}$Rb decay with total absorption spectroscopy. Previously unobserved beta feeding was seen in the 4.5-5.5 region and the GS to GS feeding was found to be 87.5(25)%. The impact on the reactor antineutrino spectra calculated with the summation method is shown and discussed.

research product

Production of a 15C radioactive ion beam based on 18O(n, α)

In the context of the SPIRAL2 radioactive beam facility the production rate of the neutron-rich 15C nucleus by 18O(n,α) has been investigated. In a water target of 20 cm3, enriched in 18O and placed behind the neutron converter, a rate of a few 1010 nuclei per second can be reached with 1mA of 40MeV deuterons. A 18O(n,α) cross-section based on the activation method is proposed. It is intermediate between the highest and lowest evaluations available to date. peerReviewed

research product

New insights into triaxiality and shape coexistence from odd-mass $^{109}$Rh

International audience; Rapid shape evolutions near A=100 are now the focus of much attention in nuclear science. Much of the recent work has been centered on isotopes with Z≤40, where the shapes are observed to transition between near-spherical to highly deformed with only a single pair of neutrons added. At higher Z, the shape transitions become more gradual as triaxiality sets in, yet the coexistence of varying shapes continues to play an important role in the low-energy nuclear structure, particularly in the odd-Z isotopes. This work aims to characterize competing shapes in the triaxial region between Zr and Sn isotopes using ultrafast timing techniques to measure lifetimes of excited s…

research product

Applications of the total absorption technique to improve reactor decay heat calculations: study of the beta decay of [sup 102,104,105]Tc

The decay heat of the fission products plays an important role in predicting the heat‐up of nuclear fuel after reactor shutdown. This form of energy release is calculated as the sum of the energy‐weighted activities of all fission products P(t) = ΣEiλiNi(t), where Ei is the decay energy of nuclide i (gamma and beta component), λi is the decay constant of nuclide i and Ni(t) is the number of nuclide i at cooling time t. Even though the reproduction of the measured decay heat has improved in recent years, there is still a long standing discrepancy at t∼1000 s cooling time for some fuels. A possible explanation for this disagreement can been found in the work of Yoshida et al. [1], who demonst…

research product

TAS measurements for reactor physics and nuclear structure

In this contribution we will present recent total absorption measurements of the beta decay of neutron‐rich nuclei performed at the IGISOL facility of the Univ. of Jyvaskyla. In the measurements the JYFL Penning Trap was used as a high resolution isobaric separator. The total absorption technique will be described and the impact of recent results in the fields of reactor physics (decay heat calculations) and nuclear structure will be discussed.

research product