0000000000505335

AUTHOR

Pasi Moilanen

EMI shielding effects of carbon nanotube cellulose nanocomposite

Electromagnetic interference shielding is an important aspect of modern communication and computer technology. Carbon nanotube cellulose nanocomposite (CNTCNC) provides a novel material as an alternative to traditional metal-based shields for EMI shielding. Stratified structures containing CNTCNC layers combined with existing commercial lossy materials (like ferrite sheets) form effective EMI shields without lowering the signal integrity performance. Significant improvement in shielding effectiveness in stacked CNTCNC layers is noteworthy. CNTCNC is essentially like paper when it comes to flexibility and hence it can be easily conformed to the mechanical structure of the device in need of s…

research product

Solution-processible electrode materials for a heat-sensitive piezoelectric thin-film sensor

Abstract Piezoelectric sensors are needed in a wide range of applications from physiological measurement applications to industrial monitoring systems. Custom-designed, highly integratable and cost-effective sensor elements can be manufactured by using flexible materials in combination with high-throughput printing for fabrication. This would also enable the embedding of ubiquitous sensors in our living environment to improve the common welfare. Here, we have fabricated flexible piezoelectric sensor elements using printing methods. We demonstrated that alternative, printable electrode materials are compatible with temperature-sensitive functional substrates. Low-temperature curable electrod…

research product

Low-Temperature Solution Processable Electrodes for Piezoelectric Sensors Applications

Piezoelectric thin-film sensors are suitable for a wide range of applications from physiological measurements to industrial monitoring systems. The use of flexible materials in combination with high-throughput printing technologies enables cost-effective manufacturing of custom-designed, highly integratable piezoelectric sensors. This type of sensor can, for instance, improve industrial process control or enable the embedding of ubiquitous sensors in our living environment to improve quality of life. Here, we discuss the benefits, challenges and potential applications of piezoelectric thin-film sensors. The piezoelectric sensor elements are fabricated by printing electrodes on both sides of…

research product