Visual Data Mining With Self-organizing Maps for “Self-monitoring” Data Analysis
Data collected in psychological studies are mainly characterized by containing a large number of variables (multidimensional data sets). Analyzing multidimensional data can be a difficult task, especially if only classical approaches are used (hypothesis tests, analyses of variance, linear models, etc.). Regarding multidimensional models, visual techniques play an important role because they can show the relationships among variables in a data set. Parallel coordinates and Chernoff faces are good examples of this. This article presents self-organizing maps (SOM), a multivariate visual data mining technique used to provide global visualizations of all the data. This technique is presented as…