0000000000511347

AUTHOR

Tom Walsh

0000-0001-8425-0135

Characterization of the resistance to Vip3Aa in Helicoverpa armigera from Australia and the role of midgut processing and receptor binding.

AbstractCrops expressing genes from Bacillus thuringiensis (Bt crops) are among the most successful technologies developed for the control of pests but the evolution of resistance to them remains a challenge. Insect resistant cotton and maize expressing the Bt Vip3Aa protein were recently commercialized, though not yet in Australia. We found that, although relatively high, the frequency of alleles for resistance to Vip3Aa in field populations of H. armigera in Australia did not increase over the past four seasons until 2014/15. Three new isofemale lines were determined to be allelic with previously isolated lines, suggesting that they belong to one common gene and this mechanism is relative…

research product

Analysis of cross-resistance to Vip3 proteins in eight insect colonies, from four insect species, selected for resistance to Bacillus thuringiensis insecticidal proteins

Abstract Bacillus thuringiensis Vip3 proteins are synthesized and secreted during the vegetative growth phase. They are activated by gut proteases, recognize and bind to midgut receptors, form pores and lyse cells. We tested the susceptibility to Vip3Aa and Vip3Ca of Cry1A-, Cry2A-, Dipel- and Vip3-resistant insect colonies from different species to determine whether resistance to other insecticidal proteins confers cross-resistance to Vip3 proteins. As expected, the colonies resistant to Cry1A proteins, Dipel (Helicoverpa armigera, Trichoplusia ni, Ostrinia furnacalis and Plodia interpunctella) or Cry2Ab (H. armigera and T. ni) were not cross-resistant to Vip3 proteins. In contrast, H. arm…

research product

Isolating, characterising and identifying a Cry1Ac resistance mutation in field populations of Helicoverpa punctigera

AbstractTransgenic cotton expressing insecticidal proteins from Bacillus thuringiensis (Bt) has been grown in Australia for over 20 years and resistance remains the biggest threat. The native moth, Helicoverpa punctigera is a significant pest of cotton. A genotype causing resistance to Cry1Ac in H. punctigera was isolated from the field and a homozygous line established. The phenotype is recessive and homozygous individuals possess 113 fold resistance to Cry1Ac. Individuals that carry Cry1Ac resistance genes are rare in Australia with a frequency of 0.033 being detected in field populations. RNAseq, RT-PCR and DNA sequencing reveals a single nucleotide polymorphism at a splice site in the c…

research product

Efficacy and Resistance Management Potential of a Modified Vip3C Protein for Control of Spodoptera frugiperda in Maize

AbstractA modified Vip3C protein has been developed that has a spectrum of activity that has the potential to be commercially useful for pest control, and shows good efficacy against Spodoptera frugiperda in insect bioassays and field trials. For the first time Vip3A and Vip3C proteins have been compared to Cry1 and Cry2 proteins in a complete set of experiments from insect bioassays to competition binding assays to field trials, and the results of these complementary experiments are in agreement with each other. Binding assays with radiolabelled toxins and brush border membrane vesicles from S. frugiperda and Helicoverpa armigera show that the modified Vip3C protein shares binding sites wi…

research product