0000000000512628

AUTHOR

Eugenio Morelli

0000-0002-8850-0442

showing 7 related works from this author

miR-22 suppresses DNA ligase III addiction in multiple myeloma

2019

Multiple myeloma (MM) is a hematologic malignancy characterized by high genomic instability. Here we provide evidence that hyper-activation of DNA ligase III (LIG3) is crucial for genomic instability and survival of MM cells. LIG3 mRNA expression in MM patients correlates with shorter survival and even increases with more advanced stage of disease. Knockdown of LIG3 impairs MM cells viability in vitro and in vivo, suggesting that neoplastic plasmacells are dependent on LIG3-driven repair. To investigate the mechanisms involved in LIG3 expression, we investigated the post-transcriptional regulation. We identified miR-22-3p as effective negative regulator of LIG3 in MM. Enforced expression of…

0301 basic medicineGenome instabilityCancer ResearchmiR-22 LIG3DNA repairDNA damageDNA repairApoptosisLIG3ArticleDNA Ligase ATP03 medical and health sciences0302 clinical medicinemicroRNABiomarkers TumorTumor Cells CulturedHumansPoly-ADP-Ribose Binding ProteinsCell ProliferationmiRNAchemistry.chemical_classificationRegulation of gene expressionGene knockdownDNA ligaseLeukemiamicroRNAChemistryHematologyPrognosisXenograft Model Antitumor AssaysGene Expression Regulation Neoplasticmultiple myelomaMicroRNAs030104 developmental biologyOncology030220 oncology & carcinogenesisCancer researchpharmacologyDNA DamageLeukemia
researchProduct

Selective targeting of IRF4 by synthetic microRNA-125b-5p mimics induces anti-multiple myeloma activity in vitro and in vivo

2015

Interferon regulatory factor 4 (IRF4) is an attractive therapeutic target in multiple myeloma (MM). We here report that expression of IRF4 mRNA inversely correlates with microRNA (miR)-125b in MM patients. Moreover, we provide evidence that miR-125b is downregulated in TC2/3 molecular MM subgroups and in established cell lines. Importantly, constitutive expression of miR-125b-5p by lentiviral vectors or transfection with synthetic mimics impaired growth and survival of MM cells and overcame the protective role of bone marrow stromal cells in vitro. Apoptotic and autophagy-associated cell death were triggered in MM cells on miR-125b-5p ectopic expression. Importantly, we found that the anti-…

MaleCancer ResearchStromal cellApoptosisBiologyMiceRNA interferenceDownregulation and upregulationIn vivoIRF4Cell Line TumormicroRNAAutophagymedicineAnimalsHumansGenes Tumor SuppressorCell ProliferationmicroRNACell growthHematologyTransfectionMolecular biologymultiple myelomaMicroRNAsmedicine.anatomical_structureOncologyInterferon Regulatory FactorsCancer researchOriginal ArticleEctopic expressionBone marrow
researchProduct

Bortezomib Induces Anti–Multiple Myeloma Immune Response Mediated by cGAS/STING Pathway Activation

2021

Abstract The proteasome inhibitor bortezomib induces apoptosis in multiple myeloma cells and has transformed patient outcome. Using in vitro as well as in vivo immunodeficient and immunocompetent murine multiple myeloma models, we here show that bortezomib also triggers immunogenic cell death (ICD), characterized by exposure of calreticulin on dying multiple myeloma cells, phagocytosis of tumor cells by dendritic cells, and induction of multiple myeloma–specific immunity. We identify a bortezomib-triggered specific ICD gene signature associated with better outcome in two independent cohorts of patients with multiple myeloma. Importantly, bortezomib stimulates multiple myeloma cell immunogen…

medicine.medical_treatmentIFNBortezomibMiceImmune systemimmune system diseaseshemic and lymphatic diseasesimmunogenic cell deathmedicineAnimalsHumansbortezomib myelomaMultiple myelomaBortezomibbusiness.industryImmunityMembrane ProteinsGeneral MedicineImmunotherapymedicine.diseaseNucleotidyltransferasesStingApoptosisCancer researchProteasome inhibitorImmunogenic cell deathMultiple MyelomabusinessSignal TransductionSTINGmedicine.drugBlood Cancer Discovery
researchProduct

Gabarap Loss Mediates Immune Escape in High Risk Multiple Myeloma

2021

Abstract Immune therapies including CAR T cells and bispecific T cell engagers are demonstrating remarkable efficacy in relapsed refractory myeloma (MM). In this context, we have recently shown that proteasome inhibitor bortezomib (BTZ) results in immunogenic cell death (ICD) and in a viral mimicry state in MM cells, allowing for immune recognition of tumor cells. Induction of a robust anti-MM immune response after BTZ was confirmed both in vitro and in vivo: treatment of 5TGM1 MM cells with BTZ induced tumor regression associated with memory immune response, confirmed by ELISPOT of mouse splenocytes. We have confirmed the obligate role of calreticulin (CALR) exposure in phagocytosis and th…

GABARAPImmunologyImmune escapemedicineCancer researchCell BiologyHematologyBiologymedicine.diseaseBiochemistryMultiple myelomaBlood
researchProduct

Inhibition of miR-21 restores RANKL/OPG ratio in multiple myeloma-derived bone marrow stromal cells and impairs the resorbing activity of mature oste…

2015

// Maria Rita Pitari 1 , Marco Rossi 1 , Nicola Amodio 1 , Cirino Botta 1 , Eugenio Morelli 1 , Cinzia Federico 1 , Annamaria Gulla 1 , Daniele Caracciolo 1 , Maria Teresa Di Martino 1 , Mariamena Arbitrio 2 , Antonio Giordano 3, 4 , Pierosandro Tagliaferri 1 , Pierfrancesco Tassone 1, 4 1 Department of Experimental and Clinical Medicine and T. Campanella Cancer Center, Magna Graecia University, S. Venuta University Campus, Catanzaro, Italy 2 ISN-CNR, Roccelletta di Borgia, Catanzaro, Italy 3 Department of Human Pathology and Oncology, University of Siena, Siena, Italy 4 Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology,…

Bone diseaseMessengerOsteoclastsTumor Microenvironment3' Untranslated RegionsMultiple myelomaTumorbiologyMesenchymal Stromal CellsRANKLProtein Inhibitors of Activated STATUp-Regulationmedicine.anatomical_structureOncologyRANKLmiRNAsmiR-21MiRNAMultiple MyelomaMiR-21; MiRNAs; Multiple myeloma bone disease; OPG; RANKL; 3' Untranslated Regions; Bone Marrow Cells; Bone Resorption; Cell Adhesion; Cell Line Tumor; Coculture Techniques; HEK293 Cells; Humans; Interleukin-6; Lentivirus; Mesenchymal Stromal Cells; MicroRNAs; Molecular Chaperones; Multiple Myeloma; Osteoclasts; Osteoprotegerin; Protein Inhibitors of Activated STAT; RANK Ligand; RNA Messenger; STAT3 Transcription Factor; Stromal Cells; Tumor Microenvironment; Up-Regulation; OncologyResearch Papermusculoskeletal diseasesSTAT3 Transcription FactorStromal cellBone Marrow CellsBone resorptionCell LineOsteoprotegerinCell Line TumormedicineCell AdhesionHumansRNA MessengerBone Resorptionbusiness.industryInterleukin-6LentivirusRANK LigandOsteoprotegerinMesenchymal Stem Cellsmedicine.diseaseMolecular medicineCoculture TechniquesMicroRNAsmultiple myeloma bone diseaseHEK293 CellsImmunologyCancer researchbiology.proteinRNAOPGBone marrowStromal CellsbusinessMolecular ChaperonesOncotarget
researchProduct

A 13 mer LNA-i-miR-221 Inhibitor Restores Drug Sensitivity in Melphalan-Refractory Multiple Myeloma Cells.

2016

Abstract Purpose: The onset of drug resistance is a major cause of treatment failure in multiple myeloma. Although increasing evidence is defining the role of miRNAs in mediating drug resistance, their potential activity as drug-sensitizing agents has not yet been investigated in multiple myeloma. Experimental Design: Here we studied the potential utility of miR-221/222 inhibition in sensitizing refractory multiple myeloma cells to melphalan. Results: miR-221/222 expression inversely correlated with melphalan sensitivity of multiple myeloma cells. Inhibition of miR-221/222 overcame melphalan resistance and triggered apoptosis of multiple myeloma cells in vitro, in the presence or absence of…

0301 basic medicineMelphalanCancer ResearchStromal cellApoptosisDrug resistancePharmacologyArticle03 medical and health scienceschemistry.chemical_compoundMice0302 clinical medicinemyeloma microRNA mir-221 melphalanimmune system diseasesIn vivohemic and lymphatic diseasesCell Line TumorProto-Oncogene ProteinsmedicineAnimalsHumansMelphalanMultiple myelomaNOD miceCell Proliferationbusiness.industryCancermedicine.diseaseXenograft Model Antitumor AssaysGene Expression Regulation NeoplasticMicroRNAs030104 developmental biologyOncologychemistryDrug Resistance Neoplasm030220 oncology & carcinogenesisGrowth inhibitionMultidrug Resistance-Associated ProteinsbusinessApoptosis Regulatory ProteinsMultiple Myelomamedicine.drugClinical cancer research : an official journal of the American Association for Cancer Research
researchProduct

MiR-29b antagonizes the pro-inflammatory tumor-promoting activity of multiple myeloma-educated dendritic cells

2017

Dendritic cells (DCs) have a key role in regulating tumor immunity, tumor cell growth and drug resistance. We hypothesized that multiple myeloma (MM) cells might recruit and reprogram DCs to a tumor-permissive phenotype by changes within their microRNA (miRNA) network. By analyzing six different miRNA-profiling data sets, miR-29b was identified as the only miRNA upregulated in normal mature DCs and significantly downregulated in tumor-associated DCs. This finding was validated in primary DCs co-cultured in vitro with MM cell lines and in primary bone marrow DCs from MM patients. In DCs co-cultured with MM cells, enforced expression of miR-29b counteracted pro-inflammatory pathways, includin…

STAT3 Transcription Factor0301 basic medicineCancer Researchdendritic cellDown-RegulationInflammationMice SCIDBiologyMice03 medical and health sciences0302 clinical medicineDownregulation and upregulationBone MarrowCell Line Tumorhemic and lymphatic diseasesmicroRNAmedicineAnimalsHumanstumor immunologyMultiple myelomaCell ProliferationInflammationmicroRNA.Cell growthNF-kappa BDendritic CellsHematologySTAT3 Transcription Factormedicine.diseaseNFKB1Up-RegulationGene Expression Regulation Neoplasticmultiple myelomaMicroRNAs030104 developmental biologymedicine.anatomical_structureOncologyCancer researchOriginal ArticleFemaleBone marrowTh17medicine.symptom030215 immunology
researchProduct