0000000000514949

AUTHOR

Francesca Giacoppo

showing 3 related works from this author

Opportunities and limitations of in-gas-cell laser spectroscopy of the heaviest elements with RADRIS

2022

International audience; The radiation detection resonance ionization spectroscopy (RADRIS) technique enables laser spectroscopic investigations of the heaviest elements which are produced in atom-at-a-time quantities from fusion-evaporation reactions. To achieve a high efficiency, laser spectroscopy is performed in a buffer-gas environment used to thermalize and stop the high-energy evaporation residues behind the velocity filter SHIP. The required cyclic measurement procedure in combination with the applied filament collection for neutralization as well as confinement of the stopped ions and subsequent pulse-heat desorption constrains the applicability of the technique. Here, some of these…

Actinidesactinideslaser spectroscopygas celltutkimusmenetelmätSuper heavy elements[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Laser spectroscopy[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]laserspektroskopiasuper heavy elementsGas cell
researchProduct

The structure of low-lying states in ${}^{140}$Sm studied by Coulomb excitation

2016

The electromagnetic structure of $^{140}$Sm was studied in a low-energy Coulomb excitation experiment with a radioactive ion beam from the REX-ISOLDE facility at CERN. The $2^+$ and $4^+$ states of the ground-state band and a second $2^+$ state were populated by multi-step excitation. The analysis of the differential Coulomb excitation cross sections yielded reduced transition probabilities between all observed states and the spectroscopic quadrupole moment for the $2_1^+$ state. The experimental results are compared to large-scale shell model calculations and beyond-mean-field calculations based on the Gogny D1S interaction with a five-dimensional collective Hamiltonian formalism. Simpler …

Physics::Accelerator PhysicsFOS: Physical sciencesNuclear Physics - ExperimentNuclear Experiment (nucl-ex)Nuclear Experiment
researchProduct

Advancing Radiation-Detected Resonance Ionization towards Heavier Elements and More Exotic Nuclides

2022

Atoms 10(2), 41 (2022). doi:10.3390/atoms10020041

Nuclear and High Energy Physicsatomic level schemeresonance ionizationgas celllaser spectroscopylaser spectroscopy; resonance ionization; atomic level scheme; gas cell; radiation detection; heavy actinidesddc:530radiation detectionCondensed Matter Physics530heavy actinidesAtomic and Molecular Physics and Optics
researchProduct