0000000000514972

AUTHOR

Piet Van Duppen

showing 12 related works from this author

Opportunities and limitations of in-gas-cell laser spectroscopy of the heaviest elements with RADRIS

2022

International audience; The radiation detection resonance ionization spectroscopy (RADRIS) technique enables laser spectroscopic investigations of the heaviest elements which are produced in atom-at-a-time quantities from fusion-evaporation reactions. To achieve a high efficiency, laser spectroscopy is performed in a buffer-gas environment used to thermalize and stop the high-energy evaporation residues behind the velocity filter SHIP. The required cyclic measurement procedure in combination with the applied filament collection for neutralization as well as confinement of the stopped ions and subsequent pulse-heat desorption constrains the applicability of the technique. Here, some of these…

Actinidesactinideslaser spectroscopygas celltutkimusmenetelmätSuper heavy elements[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Laser spectroscopy[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]laserspektroskopiasuper heavy elementsGas cell
researchProduct

Resonant laser ionization of polonium at rilis-isolde for the study of ground- and isomer-state properties

2008

Three new ionization schemes for polonium have been tested with the resonant ionization laser ion source (RILIS) during the on-line production of 196Po in a UCx target at ISOLDE. The saturation of the atomic transitions has been observed and the yields of the isotope chain 193–198,200,202,204Po have been measured. This development provides the necessary groundwork for performing in-source resonant ionization spectroscopy on the neutron-deficient polonium isotopes (Z = 84). ispartof: Nuclear Instruments & Methods in Physics Research B vol:266 issue:19 pages:4403-4406 ispartof: location:FRANCE, Deauville status: published

PoloniumNuclear and High Energy Physicschemistry.chemical_element[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural scienceslaw.inventionlawIonization0103 physical sciencesPhysics::Atomic and Molecular ClustersPhysics::Atomic Physics010306 general physicsSpectroscopyNuclear ExperimentInstrumentationPoloniumIsotope010308 nuclear & particles physicsOptical transitionSaturationLaserIon sourcechemistryOptical transitionProduction yieldLaser ionizationAlpha decay[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Atomic physics
researchProduct

First Offline Results from the S3 Low-Energy Branch

2022

International audience; We present the first results obtained from the S3 Low-Energy Branch , the gas cell setup at SPIRAL2-GANIL, which will be installed behind the S3 spectrometer for atomic and nuclear spectroscopy studies of exotic nuclei. The installation is currently being commissioned offline, with the aim to establish optimum conditions for the operation of the radio frequency quadrupole ion guides, mass separation and ion bunching, providing high-efficiency and low-energy spatial spread for the isotopes of interest. Transmission and mass-resolving power measurements are presented for the different components of the S3-LEB setup. In addition, a single-longitudinal-mode, injection-lo…

Nuclear and High Energy Physicsresonance ionization laser spectroscopy; gas cell; hypersonic gas jets; radio frequency quadrupoles; nuclear ground state properties; isotope shift; hyperfine structurehyperfine structurespektroskopiatutkimuslaitteet[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Physics Atomic Molecular & Chemicalatomifysiikka[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]radio frequency quadrupolesScience & TechnologySPECTROSCOPY[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]Physicsgas cellLASER ION-SOURCECondensed Matter PhysicslasertekniikkaAtomic and Molecular Physics and Opticsresonance ionization laser spectroscopyisotope shiftnuclear ground state propertiesPhysical Scienceshypersonic gas jetsIONIZATIONydinfysiikkaSYSTEMAtoms
researchProduct

Advancing Radiation-Detected Resonance Ionization towards Heavier Elements and More Exotic Nuclides

2022

Atoms 10(2), 41 (2022). doi:10.3390/atoms10020041

Nuclear and High Energy Physicsatomic level schemeresonance ionizationgas celllaser spectroscopylaser spectroscopy; resonance ionization; atomic level scheme; gas cell; radiation detection; heavy actinidesddc:530radiation detectionCondensed Matter Physics530heavy actinidesAtomic and Molecular Physics and Optics
researchProduct

Atom-at-a-time laser resonance ionization spectroscopy of nobelium

2016

Resonance ionization spectroscopy of nobelium (atomic number 102) reveals its ground-state transition and an upper limit for its ionization potential, paving the way to characterizing even heavier elements via optical spectroscopy. Characterizing the heaviest elements in the periodic table is a gruelling task because they are radioactive, exist only for split seconds at a time and need to be artificially produced in sufficient quantities by complicated procedures. The heaviest element that has been characterized by optical spectroscopy is fermium, which has an atomic number of 100. Mustapha Laatiaoui et al. extend the methods used for fermium to perform optical spectroscopy on nobelium (ato…

PhysicsMultidisciplinary010308 nuclear & particles physicsFermiumchemistry.chemical_element[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural scienceschemistry13. Climate actionIonization0103 physical sciencesAtomAtomic numberNobeliumPhysics::Atomic PhysicsAtomic physics010306 general physicsSpectroscopyRelativistic quantum chemistryLawrenciumNature
researchProduct

First β -decay spectroscopy of In135 and new β -decay branches of In134

2021

PhysicsNuclear physics010308 nuclear & particles physics0103 physical sciences010306 general physicsSpectroscopy01 natural sciencesBeta decayPhysical Review C
researchProduct

The SPEDE Spectrometer: Combined In-Beam γ-ray and Conversion Electron Spectroscopy with Radioactive Ion Beams

2015

The SPEDE spectrometer [1] aims to combine a silicon detector, for the detection of electrons, with the MINIBALL γ-ray detection array for in-beam studies employing radioactive ion beams at the HIE-ISOLDE facility at CERN. The setup will be primarily used for octupole collectivity [2] and shape coexistence studies [3, 4] in Coulomb excitation experiments. In the shape coexistence cases the transitions between states of the same spin and parity have enhanced E0 strength [5]. Additionally the 0→0 transitions, typically present in nuclei exhibiting shape coexistence [6], can only occur via E0 transitions, i.e. via internal conversion electron emission.

Radioactive ion beamsPhysicsLarge Hadron ColliderSpectrometerta114Physics::Instrumentation and DetectorsParity (physics)Coulomb excitationElectronElectron spectroscopyPhysics::Accelerator PhysicsSilicon detectorAtomic physicsconversion electron spectrometersNuclear Experiment
researchProduct

High-resolution laser system for the S3-Low Energy Branch

2022

International audience; In this paper we present the first high-resolution laser spectroscopy results obtained at the GISELE laser laboratory of the GANIL-SPIRAL2 facility, in preparation for the first experiments with the S$^3$-Low Energy Branch. Studies of neutron-deficient radioactive isotopes of erbium and tin represent the first physics cases to be studied at S$^3$. The measured isotope-shift and hyperfine structure data are presented for stable isotopes of these elements. The erbium isotopes were studied using the $4f^{12}6s^2$$^3H_6 \rightarrow 4f^{12}(^3 H)6s6p$$J = 5$ atomic transition (415 nm) and the tin isotopes were studied by the $5s^25p^2 (^3P_0) \rightarrow 5s^25p6s (^3P_1)$…

Resonance ionization laser spectroscopyNuclear and High Energy PhysicsIsotope shiftAtomic Physics (physics.atom-ph)FOS: Physical sciencesHyperfine structureNuclear Experiment (nucl-ex)[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear ground state propertiesNuclear ExperimentInstrumentation[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]Physics - Atomic Physics
researchProduct

Resolution Characterizations of JetRIS in Mainz Using 164Dy

2022

Atoms 10(2), 57 (2022). doi:10.3390/atoms10020057

de Laval nozzlenobeliumNuclear and High Energy PhysicsScience & TechnologyRESONANCE IONIZATION SPECTROSCOPYPhysicsJetRIS; fluorescence spectroscopy; gas-jet; de Laval nozzle; nobeliumPhysics Atomic Molecular & Chemicalfluorescence spectroscopyCondensed Matter Physics530Atomic and Molecular Physics and OpticsJetRISPhysical SciencesELEMENTSgas-jetddc:530Physics::Atomic PhysicsNuclear ExperimentLASER SPECTROSCOPYAtoms
researchProduct

Coulomb excitation of pear-shaped nuclei

2019

There is a large body of evidence that atomic nuclei can undergo octupole distortion and assume the shape of a pear. This phenomenon is important for measurements of electric-dipole moments of atoms, which would indicate CP violation and hence probe physics beyond the Standard Model of particle physics. Isotopes of both radon and radium have been identified as candidates for such measurements. Here, we have observed the low-lying quantum states in 224Rn and 226Rn by accelerating beams of these radioactive nuclei. We show that radon isotopes undergo octupole vibrations but do not possess static pear-shapes in their ground states. We conclude that radon atoms provide less favourable condition…

PhysicsIsotope010308 nuclear & particles physicsPhysicsQC1-999Physics beyond the Standard Modelchemistry.chemical_elementRadonCoulomb excitation[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural scienceschemistryQuantum state0103 physical sciencesMoment (physics)Atomic nucleusCP violationNuclear Physics - ExperimentPhysics::Atomic PhysicsAtomic physics010306 general physicsydinfysiikka
researchProduct

First operational experience of HIE-ISOLDE

2016

The High Intensity and Energy ISOLDE project (HIE-ISOLDE)* is a major upgrade of the ISOLDE facility at CERN. The energy range of the post-accelerator will be extended from 2.85 MeV/u to 9.3 MeV/u for beams with A/q = 4.5 (and to 14.3 MeV/u for A/q = 2.5) once all the cryomodules of the superconducting accelerator are in place. The project has been divided into different phases, the first of which (phase 1a) finished in October 2015 after the hardware and beam commissioning were completed**. The physics campaign followed with the delivery of both radioactive and stable beams to two different experimental stations. The characteristics of the beams (energies, intensities, time structure and b…

kokeiludetectorexperimentdetector; dipole; ion; experiment; targetPhysics::Accelerator Physicsion04 Hadron AcceleratorsNuclear ExperimentAccelerators and Storage RingsdipoletargetAccelerator Physics
researchProduct

Study of the radiative decay of the low-energy isomer in ${}^{229}$Th

2020

Detectors and Experimental Techniques
researchProduct