0000000000516247
AUTHOR
Regina Renhofa
Mutilation of RNA phage Qβ virus-like particles: from icosahedrons to rods
Icosahedral virus-like particles (VLPs) of RNA phage Qbeta are stabilized by four disulfide bonds of cysteine residues 74 and 80 within the loop between beta-strands F and G (FG loop) of the monomeric subunits, which determine the five-fold and quasi-six-fold symmetry contacts of the VLPs. In order to reduce the stability of Qbeta VLPs, we mutationally converted the amino acid stretch 76-ANGSCD-81 within the FG loop into the 76-VGGVEL-81 sequence. It led to production in Escherichia coli cells of aberrant rod-like Qbeta VLPs, along with normal icosahedral capsids. The length of the rod-like particles exceeded 4-30 times the diameter of icosahedral Qbeta VLPs.
An amino-terminal segment of hantavirus nucleocapsid protein presented on hepatitis B virus core particles induces a strong and highly cross-reactive antibody response in mice
AbstractPreviously, we have demonstrated that hepatitis B virus (HBV) core particles tolerate the insertion of the amino-terminal 120 amino acids (aa) of the Puumala hantavirus nucleocapsid (N) protein. Here, we demonstrate that the insertion of 120 amino-terminal aa of N proteins from highly virulent Dobrava and Hantaan hantaviruses allows the formation of chimeric core particles. These particles expose the inserted foreign protein segments, at least in part, on their surface. Analysis by electron cryomicroscopy of chimeric particles harbouring the Puumala virus (PUUV) N segment revealed 90% T = 3 and 10% T = 4 shells. A map computed from T = 3 shells shows additional density splaying out …