0000000000517050

AUTHOR

Steve Albrecht

Boosting inverted perovskite solar cell performance by using 9,9-bis(4-diphenylaminophenyl)fluorene functionalized with triphenylamine as a dopant-free hole transporting material

In this study, two newly developed small molecules based on 9,9-bis(4-diphenylaminophenyl)fluorene functionalized with triphenylamine moieties, namely TPA-2,7-FLTPA-TPA and TPA-3,6-FLTPA-TPA, are designed, synthesized and characterized. The electrochemical, optical and thermal properties of both materials are investigated using various techniques. Afterwards, these materials are employed as dopant-free hole transporting materials (HTMs) in planar inverted perovskite solar cell devices with the aim of determining the device performance and studying their stability in comparison with reference N4,N4,N4′′,N4′′-tetra([1,10-biphenyl]-4-yl)-[1,1′:4′,1′′-terphenyl]-4,4′′-diamine (TaTm)-based devic…

research product

Efficient Wide-Bandgap Mixed-Cation and Mixed-Halide Perovskite Solar Cells by Vacuum Deposition

Vacuum deposition methods are increasingly applied to the preparation of perovskite films and devices, in view of the possibility to prepare multilayer structures at low temperature. Vacuum-deposited, wide-bandgap solar cells based on mixed-cation and mixed-anion perovskites have been scarcely reported, due to the challenges associated with the multiple-source processing of perovskite thin films. In this work, we describe a four-source vacuum deposition process to prepare wide-bandgap perovskites of the type FA1-n Cs n Pb(I1-x Br x )3 with a tunable bandgap and controlled morphology, using FAI, CsI, PbI2, and PbBr2 as the precursors. The simultaneous sublimation of PbI2 and PbBr2 allows the…

research product

Interface Molecular engineering for laminated monolithic perovskite/silicon tandem solar cells with 80.4% fill factor

The Cluster of Excellence funded this work through “Engineering of Advanced Materials” (EAM). The authors acknowledge financial support from the DFG research-training group GRK 1896 at Erlangen University and from the Joint Project Helmholtz-Institute Erlangen Nurnberg (HI-ERN) under Project No. DBF01253, respectively. C.J.B. acknowledges the financial support through the “Aufbruch Bayern” initiative of the state of Bavaria (EnCN and Solar Factory of the Future) and the “Solar Factory of the Future” with the Energy Campus Nurnberg (EnCN). S.L. acknowledges the Real Colegio Complutense in Harvard for a research grant, and to the Spanish Ministerio de Ciencia e Innovacion for a fellowship thr…

research product

Influence of doped charge transport layers on efficient perovskite solar cells

Planar vacuum deposited p–i–n methyl ammonium lead tri-iodide perovskite solar cells are prepared with different electron and hole transporting layers, either doped or undoped. The effect of these layers on the solar cells performance (efficiency and stability) is studied. The main benefit of using doped layers lies in the formation of barrier free charge extraction contacts to the electrodes. However, this comes at the cost of increased residual absorption (reducing the current density and efficiency of the cells) and a decreased stability. A generic solar cell structure using undoped charge extraction layers is presented, containing a thin layer of a strong electron acceptor in between th…

research product