0000000000517521

AUTHOR

Gabriel Christmann

showing 4 related works from this author

Room temperature polariton luminescence from a GaN∕AlGaN quantum well microcavity

2006

The authors report on the demonstration of strong light-matter coupling at room temperature using a crack-free UV microcavity containing GaN/AlGaN quantum wells (QWs). Lattice-matched AlInN/AlGaN distributed Bragg reflectors (DBRs) with a maximum peak reflectivity of 99.5% and SiO2/Si3N4 DBRs were used to form high finesse hybrid microcavities. State-of-the-art GaN/Al0.2Ga0.8N QWs emitting at 3.62 eV with a linewidth of 45 meV at 300 K were inserted in these structures. For a 3 lambda/2 microcavity containing six QWs, the interaction between cavity photons and QW excitons is sufficiently large to reach the strong coupling regime. A polariton luminescence is observed with a vacuum field Rabi…

Condensed Matter::Quantum GasesPhotonPhotoluminescenceMaterials sciencePhysics and Astronomy (miscellaneous)Condensed Matter::Otherbusiness.industryEXCITONSExcitonSEMICONDUCTOR MICROCAVITIESPhysics::OpticsGAN MICROCAVITIESMicrocavitiesCondensed Matter::Materials ScienceFinesseLaser linewidthexciton-polariton condensatesPolaritonOptoelectronicsbusinessLuminescenceQuantum wellpolaritonsApplied Physics Letters
researchProduct

AlInN based Microcavities

2006

AlInN microcavitiesSettore ING-INF/01 - Elettronica
researchProduct

Room-temperature polariton luminescence from a bulk GaN microcavity

2006

We report strong exciton-photon coupling at room temperature in a hybrid high quality bulk 3 lambda/2 GaN cavity with a bottom lattice-matched AlInN/AlGaN distributed Bragg reflector through angle-resolved polarized photoluminescence (PL). Coupling of the optically active free excitons (X-A, X-B, and X-C) to the cavity mode is demonstrated, with their contribution to the PL spectra varying with polarization. Under TE polarization, exciton oscillator strengths for X-A and X-B are about one order of magnitude larger than in bulk GaAs. Photoluminescence exhibits a strong bottleneck effect despite its thermal lineshape.

QUANTUM MICROCAVITYPhotoluminescenceMaterials scienceExcitonSEMICONDUCTOR MICROCAVITIESPhysics::Opticslaw.inventionCondensed Matter::Materials ScienceLASERSlawPolaritonCondensed Matter::Otherbusiness.industryCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsDistributed Bragg reflectorPolarization (waves)LaserMicrocavitiesElectronic Optical and Magnetic Materialsexciton-polariton condensatesOptoelectronicsbusinessLuminescenceOrder of magnitudepolaritonsPhysical Review B
researchProduct

Current status of AlInN layers lattice-matched to GaN for photonics and electronics

2007

We report on the current properties of Al1-x InxN (x approximate to 0.18) layers lattice- matched ( LM) to GaN and their specific use to realize nearly strain- free structures for photonic and electronic applications. Following a literature survey of the general properties of AlInN layers, structural and optical properties of thin state- of- the- art AlInN layers LM to GaN are described showing that despite improved structural properties these layers are still characterized by a typical background donor concentration of ( 1 - 5) x 10(18) cm(-3) and a large Stokes shift (similar to 800 meV) between luminescence and absorption edge. The use of these AlInN layers LM to GaN is then exemplified …

PhotoluminescenceMaterials scienceAcoustics and UltrasonicsGallium nitrideSettore ING-INF/01 - ElettronicaVertical-cavity surface-emitting laserchemistry.chemical_compoundMOLECULAR-BEAM EPITAXYALGAN/GAN QUANTUM-WELLSIII-VDISTRIBUTED BRAGG REFLECTORSCRYSTALSURFACE-EMITTING LASERSbusiness.industryREFLECTORSHeterojunctionOPTICAL-PROPERTIESCondensed Matter PhysicsAL1-XINXN THIN-FILMSSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsDISTRIBUTED BRAGGAbsorption edgechemistryOptoelectronicsVAPOR-PHASE EPITAXYIII-V NITRIDESFIELD-EFFECT TRANSISTORSNITRIDESbusinessLiterature surveyCRYSTAL GALLIUM NITRIDELasing thresholdGALLIUM NITRIDEMolecular beam epitaxyJournal of Physics D: Applied Physics
researchProduct