The unique structure of complete lipopolysaccharide isolated from semi-rough Plesiomonas shigelloides O37 (strain CNCTC 39/89) containing (2S)-O-(4-oxopentanoic acid)-α-d-Glcp (α-d-Lenose)
The complete structure of semi-rough lipopolysaccharide (SR-LPS) of Plesiomonas shigelloides CNCTC 39/89 (serotype O37) has been investigated by (1)H and (13)C NMR spectroscopy, matrix-assisted laser-desorption/ionization time-of-flight MS, and chemical methods. The following structure of the single unit of the O-antigen has been established: [formula see text] in which α-D-Lenp is (2S)-O-(4-oxopentanoic acid)-α-D-Glcp residue which has not been found in nature. The absolute configuration of oxopentanoic acid moiety in α-d-Lenose residue was determined by NOESY experiment combined with molecular modeling (MM2 force field). The decasaccharide core is substituted at C-4 of the β-D-Glcp residu…
Core Oligosaccharide of Plesiomonas shigelloides PCM 2231 (Serotype O17) Lipopolysaccharide — Structural and Serological Analysis
The herein presented complete structure of the core oligosaccharide of lipopolysaccharide (LPS) P. shigelloides Polish Collection of Microorganisms (PCM) 2231 (serotype O17) was investigated by (1)H, (13)C NMR spectroscopy, mass spectrometry, chemical analyses and serological methods. The core oligosaccharide is composed of an undecasaccharide, which represents the second core type identified for P. shigelloides serotype O17 LPS. This structure is similar to that of the core oligosaccharide of P. shigelloides strains 302-73 (serotype O1) and 7-63 (serotype O17) and differs from these only by one sugar residue. Serological screening of 55 strains of P. shigelloides with the use of serum agai…
The novel structure of the core oligosaccharide backbone of the lipopolysaccharide from the Plesiomonas shigelloides strain CNCTC 8089 (serotype O13)
The new structure of the core oligosaccharide of Plesiomonas shigelloides CNCTC 80/89 (serotype O13) lipopolysaccharide has been investigated by chemical methods, (1)H and (13)C NMR spectroscopy and matrix-assisted laser-desorption/ionization time of flight (MALDI-TOF). It was concluded that the core oligosaccharide of P. shigelloides CNCTC 80/89 is a nonasaccharide with the following structure: The position of glycine was determined by MALDI-TOF MS/MS analyses.
New functional ligands for ficolin-3 among lipopolysaccharides of Hafnia alvei.
Ficolin-1 (M), ficolin-2 (L), ficolin-3 (H) and mannan-binding lectin (MBL) activate the complement system and have opsonic activity. The specificity of ficolin-3 is poorly characterized and currently limited to a few ligands only. We present new specific targets for human ficolin-3, identified among lipopolysaccharides (LPSs, endotoxin) of Hafnia alvei. The interaction was restricted to LPSs of four strains: 23, Polish Collection of Microorganisms (PCM) 1200, PCM 1203 and PCM 1205 and limited to their O-specific polysaccharides (O-specific PSs) composed of different numbers of oligosaccharide (OS) repeating units (RUs). Moreover, these LPS/ficolin-3 complexes activated the lectin pathway o…
Structural analysis of the lipid A isolated from Hafnia alvei 32 and PCM 1192 lipopolysaccharides[S]
Hafnia alvei, a Gram-negative bacterium, is an opportunistic pathogen associated with mixed hospital infections, bacteremia, septicemia, and respiratory diseases. The majority of clinical symptoms of diseases caused by this bacterium have a lipopolysaccharide (LPS, endotoxin)-related origin. The lipid A structure affects the biological activity of endotoxins predominantly. Thus, the structure of H. alvei lipid A was analyzed for the first time. The major form, asymmetrically hexa-acylated lipid A built of beta-D-GlcpN4P-(1-->6)-alpha-D-GlcpN1P substituted with (R)-14:0(3-OH) at N-2 and O-3, 14:0(3-(R)-O-12:0) at N-2', and 14:0(3-(R)-O-14:0) at O-3', was identified by ESI-MS(n) and MALDI-tim…
Core oligosaccharide of Escherichia coli B—the structure required for bacteriophage T4 recognition
Abstract The structure of Escherichia coli B strain PCM 1935 core oligosaccharide has been investigated by 1H and 13C NMR spectroscopy, MALDI-TOF MS and ESI MSn. It was concluded that the core oligosaccharide is a pentasaccharide with the following structure: ESI MS/MS analysis revealed that the glycine (a minor component) is linked to the →3,7)- l -α- d -Hepp-(1→ residue.