0000000000520105
AUTHOR
F. Figueras
VizieR Online Data Catalog: 46 open clusters GaiaDR2 HR diagrams (Gaia Collaboration, 2018)
We have determined the membership of 46 open clusters. For the nine clusters within 250pc we determined optimised parallaxes based on the combined information extracted from the measured parallax and proper motion values. These clusters are : in Tables A1a & A3: alphaPer, Blanco1, ComaBer, Hyades, IC2391, IC2602, NGC2451A, Pleiades, Praesepe. The remaining 37 clusters are in Table A1b & A4: Coll140, IC4651, IC4665, IC4725, IC4756, NGC0188, NGC0752, NGC0869, NGC0884, NGC1039, NGC1901, NGC2158, NGC2168, NGC2232, NGC2323, NGC2360, NGC2422, NGC2423, NGC2437, NGC2447, NGC2516, NGC2547, NGC2548, NGC2682, NGC3228, NGC3532, NGC6025, NGC6281, NGC6405, NGC6475, NGC6633, NGC6774, NGC6793, NGC7092, Sto…
OMC: An Optical Monitoring Camera for INTEGRAL
The Optical Monitoring Camera (OMC) will observe the optical emission from the prime targets of the gammaray instruments onboard the ESA mission INTEGRAL, with the support of the JEM-X monitor in the X-ray domain. This capability will provide invaluable diagnostic information on the nature and the physics of the sources over a broad wavelength range. Its main scientific objectives are: (1) to monitor the optical emission from the sources observed by the gamma- and X-ray instruments, measuring the time and intensity structure of the optical emission for comparison with variability at high energies, and (2) to provide the brightness and position of the optical counterpart of any gamma- or X-r…
The Gaia-ESO Public Spectroscopic Survey
The Gaia-ESO Public Spectroscopic Survey has begun and will obtain high quality spectroscopy of some 100000 Milky Way stars, in the field and in open clusters, down to magnitude 19, systematically covering all the major components of the Milky Way. This survey will provide the first homogeneous overview of the distributions of kinematics and chemical element abundances in the Galaxy. The motivation, organisation and implementation of the Gaia-ESO Survey are described, emphasising the complementarity with the ESA Gaia mission. Spectra from the very first observing run of the survey are presented.
VizieR Online Data Catalog: Gaia DR2 sources in GC and dSph (Gaia Collaboration+, 2018)
The files contains lists of possible members of each of the objects (75 globular clusters, 9 dwarf spheroidal galaxies, the Bootes I UFD, the LMC and SMC). The stars in these lists have been selected and used to determine the astrometric parameters of the corresponding objects following either the procedures described in Sec. 2.1 (for the clusters and dwarfs) or in Sec. 2.2 (for the LMC and SMC). The first column is the "source_id" as given by Gaia, the ra and declination of the star in degrees, and its G-band magnitude (known as "photgmean_mag" in the Gaia archive). (2 data files).
Gaia DR2 reveals a star formation burst in the disc 2-3 Gyr ago
We use Gaia DR2 magnitudes, colours and parallaxes for stars with G<12 to explore a 15-dimensional space that includes simultaneously the initial mass function (IMF) and a non-parametric star formation history (SFH) for the Galactic disc. This inference is performed by combining the Besancon Galaxy Model fast approximate simulations (BGM FASt) and an approximate Bayesian computation algorithm. We find in Gaia DR2 data an imprint of a star formation burst 2-3 Gyr ago, in the Galactic thin disc domain, and a present star formation rate (SFR) of about 1 Msun. Our results show a decreasing trend of the SFR from 9-10 Gyr to 6-7 Gyr ago. This is consistent with the cosmological star formation …
OMC: An Optical Monitoring Camera for INTEGRAL - Instrument description and performance
The Optical Monitoring Camera (OMC) will observe the optical emission from the prime targets of the gammaray instruments onboard the ESA mission INTEGRAL, with the support of the JEM-X monitor in the X-ray domain. This capability will provide invaluable diagnostic information on the nature and the physics of the sources over a broad wavelength range. Its main scientific objectives are: ( 1) to monitor the optical emission from the sources observed by the gamma- and X-ray instruments, measuring the time and intensity structure of the optical emission for comparison with variability at high energies, and ( 2) to provide the brightness and position of the optical counterpart of any gamma- or X…