0000000000520127

AUTHOR

Roland Mattheis

Double resonance response in nonlinear magnetic vortex dynamics

We present experimental evidences for the dynamical bifurcation behavior of ac-driven magnetic vortex core gyration in a ferromagnetic disk. The dynamical bifurcation, i.e., appearance and disappearance of two stable dynamical states in the vortex gyration, occurring as the amplitude of the driving Oersted field increases to ${B}_{Oe}g{B}_{Oe}^{cr}$, manifests itself in a double resonance response in the dependence of homodyne the dc-voltage signal on the frequency $\ensuremath{\omega}$ of the applied microwave current. We find that the frequency range $\ensuremath{\delta}\ensuremath{\omega}$ between the two resonance features strongly increases with the excitation power. Our analysis based…

research product

Reliable Propagation of Magnetic Domain Walls in Cross Structures for Advanced Multiturn Sensors

[EN] We develop and analyze an advanced concept for a domain-wall-based sensing of rotations. Moving domain walls in n closed loops with n - 1 intersecting convolutions by rotating fields, we are able to sense n rotations. By combining loops with coprime numbers of rotations, we create a sensor system allowing for the total counting of millions of turns of a rotating applied magnetic field. We analyze the operation of the sensor and identify the intersecting cross structures as the critical component for reliable operation. Specifically, depending on the orientation of the applied field angle with the magnetization in the branches of the cross, a domain wall is found to propagate in an unwa…

research product