0000000000520528

AUTHOR

Sebahattin Cirak

showing 6 related works from this author

An organelle-specific protein landscape identifies novel diseases and molecular mechanisms.

2016

Cellular organelles provide opportunities to relate biological mechanisms to disease. Here we use affinity proteomics, genetics and cell biology to interrogate cilia: poorly understood organelles, where defects cause genetic diseases. Two hundred and seventeen tagged human ciliary proteins create a final landscape of 1,319 proteins, 4,905 interactions and 52 complexes. Reverse tagging, repetition of purifications and statistical analyses, produce a high-resolution network that reveals organelle-specific interactions and complexes not apparent in larger studies, and links vesicle transport, the cytoskeleton, signalling and ubiquitination to ciliary signalling and proteostasis. We observe sub…

Proteomics0301 basic medicineSystems AnalysisDNA Mutational Analysislnfectious Diseases and Global Health Radboud Institute for Molecular Life Sciences [Radboudumc 4]General Physics and AstronomyDatasets as Topicmethods [Chromatography Affinity]ProteomicsSensory disorders Donders Center for Medical Neuroscience [Radboudumc 12]Chromatography AffinityMass SpectrometryProtein Interaction Mappingtherapy [Ciliopathies]genetics [Ciliopathies]methods [Molecular Targeted Therapy]Molecular Targeted TherapyProtein Interaction MapsMultidisciplinaryCiliumChemistry (all)Qabnormalities [Spine]pathology [Ciliopathies]genetics [Muscle Hypotonia]therapy [Muscle Hypotonia]Metabolic Disorders Radboud Institute for Molecular Life Sciences [Radboudumc 6]metabolism [Proteins]isolation & purification [Proteins]physiology [Biological Transport]3. Good healthCell biologyVesicular transport proteinpathology [Dwarfism]metabolism [Cilia]Muscle Hypotoniaddc:500pathology [Muscle Hypotonia]pathology [Spine]genetics [Dwarfism]Rare cancers Radboud Institute for Health Sciences [Radboudumc 9]ScienceDwarfismExocystBiologyArticleGeneral Biochemistry Genetics and Molecular BiologyPhysics and Astronomy (all)03 medical and health sciencesIntraflagellar transportCiliogenesisOrganelleHumansCiliaBiochemistry Genetics and Molecular Biology (all)ProteinsBiological TransportGeneral Chemistrytherapy [Dwarfism]Fibroblastsgenetics [Proteins]CiliopathiesSpinemethods [Protein Interaction Mapping]Renal disorders Radboud Institute for Molecular Life Sciences [Radboudumc 11]030104 developmental biologyProteostasisHEK293 Cellsmethods [Proteomics]
researchProduct

The genomic and clinical landscape of fetal akinesia

2020

International audience; Fetal akinesia has multiple clinical subtypes with over 160 gene associations, but the genetic etiology is not yet completely understood.Methods: In this study, 51 patients from 47 unrelated families were analyzed using next-generation sequencing (NGS) techniques aiming to decipher the genomic landscape of fetal akinesia (FA).Results: We have identified likely pathogenic gene variants in 37 cases and report 41 novel variants. Additionally, we report putative pathogenic variants in eight cases including nine novel variants. Our work identified 14 novel disease-gene associations for fetal akinesia: ADSSL1, ASAH1, ASPM, ATP2B3, EARS2, FBLN1, PRG4, PRICKLE1, ROR2, SETBP1…

MaleCandidate geneMyopathyVARIANTSFetal akinesiaMESH: Ryanodine Receptor Calcium Release Channel0302 clinical medicineMESH: ChildGuanine Nucleotide Exchange FactorsMESH: Guanine Nucleotide Exchange FactorsExomeCopy-number variationChildExomeMESH: High-Throughput Nucleotide SequencingGenetics (clinical)GeneticsArthrogryposisArthrogryposis0303 health sciencesMESH: Infant NewbornMESH: Genetic Predisposition to DiseaseHigh-Throughput Nucleotide SequencingRNA-Binding ProteinsMESH: Infant3. Good healthFetal DiseasesCopy-number variationMESH: Fetal DiseasesMESH: Young AdultChild PreschoolASAH1FemaleMESH: DNA Copy Number Variationsmedicine.symptomAdultGENETICSAdolescentDNA Copy Number VariationsMESH: Trans-ActivatorsMESH: ArthrogryposisBiologyASPMYoung Adult03 medical and health sciencesMuscular DiseasesmedicineHumansGenetic Predisposition to DiseaseGene030304 developmental biologyMESH: Adolescent[SDV.MHEP.PED]Life Sciences [q-bio]/Human health and pathology/PediatricsMESH: HumansMUTATIONSMESH: Child PreschoolInfant NewbornMESH: Muscular DiseasesInfantNEMALINE MYOPATHYRyanodine Receptor Calcium Release ChannelMESH: Adultmedicine.diseaseCongenital myopathyMESH: MaleMESH: RNA-Binding Proteins[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human geneticsDISTAL ARTHROGRYPOSISTrans-ActivatorsMESH: Female030217 neurology & neurosurgery
researchProduct

Correction: The genomic and clinical landscape of fetal akinesia

2020

Abstract An amendment to this paper has been published and can be accessed via a link at the top of the paper.

Fetal akinesiabusiness.industryPublished ErratumHardware_INTEGRATEDCIRCUITSMEDLINEMedicineComputingMilieux_LEGALASPECTSOFCOMPUTINGComputerApplications_COMPUTERSINOTHERSYSTEMSHardware_PERFORMANCEANDRELIABILITYBioinformaticsbusinessGeneralLiterature_MISCELLANEOUSGenetics (clinical)Genetics in Medicine
researchProduct

Cockroach allergens Per a 3 are oligomers

2009

Allergens from cockroaches cause major asthma-related health problems worldwide. Among them Per a 3 belongs to the most potent allergens. Although the sequences of some members of the Per a 3-family are known, their biochemical and biophysical properties have not been investigated. Here we present for the first time a thorough structural characterization of these allergens, which have recently been tested to induce an increase of allergy specific indicators in blood of Europeans. We isolated two Per a 3 isoforms, which occur freely dissolved in the hemolymph as hexamers with molecular masses of 465+/-25kDa (P II) and 512+/-25kDa (P I). Their sedimentation coefficients (S(20,W)) were determi…

Models MolecularSequence analysismedicine.medical_treatmentProtein subunitMolecular Sequence DataImmunologySequence alignmentRandom hexamermedicine.disease_causeMass SpectrometryAllergenmedicineAnimalsPeriplanetaProtein IsoformsAmino Acid SequencePeptide sequenceBase SequencebiologyCircular DichroismHemocyaninSequence Analysis DNAAllergensbiology.organism_classificationMicroscopy ElectronMicroscopy FluorescenceBiochemistryImmunologyInsect ProteinsElectrophoresis Polyacrylamide GelAmerican cockroachSequence AlignmentUltracentrifugationDevelopmental BiologyDevelopmental & Comparative Immunology
researchProduct

Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition) 1

2021

Contains fulltext : 232759.pdf (Publisher’s version ) (Closed access) In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to…

0301 basic medicineProgrammed cell deathSettore BIO/06AutophagosomeAutolysosome[SDV]Life Sciences [q-bio]lnfectious Diseases and Global Health Radboud Institute for Molecular Life Sciences [Radboudumc 4]Autophagy-Related ProteinsReviewComputational biology[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiologySettore MED/0403 medical and health sciencesstressChaperone-mediated autophagyddc:570AutophagyLC3AnimalsHumanscancerSettore BIO/10Autophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSet (psychology)Molecular Biologyvacuole.phagophore030102 biochemistry & molecular biologyvacuolebusiness.industryInterpretation (philosophy)AutophagyAutophagosomesneurodegenerationCell BiologyfluxMulticellular organismmacroautophagy030104 developmental biologyKnowledge baselysosomeAutophagosome; LC3; cancer; flux; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleBiological AssayLysosomesbusinessBiomarkers[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

Autophagy

2021

In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide…

macroautophagy;autophagyAutophagosome[SDV]Life Sciences [q-bio]canceLC3 macroautophagyautophagosomeneurodegeneration;[SDV.BC]Life Sciences [q-bio]/Cellular BiologyAutophagy AutophagosomeNOstress vacuolestressautophagic processesstrerfluxLC3cancerguidelinesAutophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSettore BIO/06 - Anatomia Comparata E Citologia[SDV.BC] Life Sciences [q-bio]/Cellular BiologyComputingMilieux_MISCELLANEOUSMedaka oryzias latipesphagophorevacuoleQHneurodegenerationAutophagosome cancer flux LC3 lysosome macroautophagy neurodegeneration phagophore stress vacuoleautophagy; autophagic processes; guidelines; autophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuolefluxmacroautophagystress.lysosomeAutophagosome; LC3; cancer; flux; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSettore BIO/17 - ISTOLOGIARC
researchProduct