0000000000520739

AUTHOR

A. Korgul

showing 14 related works from this author

Decay studies in the A∼225 Po-Fr region from the DESPEC campaign at GSI in 2021

2022

The HISPEC-DESPEC collaboration aims at investigating the struc-ture of exotic nuclei formed in fragmentation reactions with decay spectroscopymeasurements, as part of the FAIR Phase-0 campaign at GSI. This paper reportson first results of an experiment performed in spring 2021, with a focus on beta-decaystudies in the Po-Fr nuclei in the 220 < A <230 island of octupole deformationexploiting the DESPEC setup. Ion-beta correlations and fast-timing techniques arebeing employed, giving an insight into this difficult-to-reach region. peerReviewed

ydinfysiikka
researchProduct

New subshell closure atN=58emerging in neutron-rich nuclei beyondNi78

2010

The structure of neutron-rich nuclei beyond $^{78}\mathrm{Ni}$ was studied using postaccelerated radioactive beams of $^{83,84,85}\mathrm{Ga}$ utilizing $\ensuremath{\beta} \ensuremath{\gamma}$ and $\ensuremath{\beta}\ensuremath{-}n \ensuremath{\gamma}$ spectroscopy. Our data, when combined with energy level systematics, suggests a possible new spherical subshell closure at $N=58$ is created by the nearly degenerated $\ensuremath{\nu}3{s}_{1/2}$ and $\ensuremath{\nu}2{d}_{5/2}$ orbitals being well separated from other orbitals above $N=50$. The near degeneracy of these states could be evidenced by isomerism in this region. The energies of the ${2}_{1}^{+}$ and proposed ${4}_{1}^{+}$ states …

PhysicsRadioactive ion beamsNuclear and High Energy PhysicsIsotopes of germaniumAtomic orbitalDouble beta decayNuclear structureGamma spectroscopyNeutronAtomic physicsSpectroscopyPhysical Review C
researchProduct

Shell structure beyond the proton drip line studied via proton emission from deformed 141Ho

2008

Abstract Fine structure in proton emission from the 7 / 2 − [ 523 ] ground state and from the 1 / 2 + [ 411 ] isomer in deformed nucleus 141Ho was studied by means of fusion-evaporation reactions and digital signal processing. Proton transitions to the first excited 2+ state in 140Dy, with the branching ratio of I p g s ( 2 + ) = 0.9 ± 0.2 % and I p m ( 2 + ) = 1.7 ± 0.5 % , were observed. The data are analyzed within the non-adiabatic weak coupling model assuming a large quadrupole deformation of the daughter nucleus 140Dy as predicted by the self-consistent theory. Implications of this result on coexistence effects around N = 74 are discussed. Significant modifications of the proton shell…

PhysicsNuclear and High Energy PhysicsProtonProton radioactivity; Proton shell structure; Two-body tensor interactionsNuclear TheoryHadronElementary particleExcited stateQuadrupoleProton emissionAtomic physicsNuclear ExperimentNucleonGround statePhysics Letters B
researchProduct

The BRIKEN Project: Extensive Measurements of $\beta $-delayed Neutron Emitters for the Astrophysical r Process

2018

An ambitious program to measure decay properties, primarily β-delayed neutron emission probabilities and half-lives, for a significant number of nuclei near or on the path of the rapid neutron capture process, has been launched at the RIKEN Nishina Center. We give here an overview of the status of the project.

AstrofísicaDelayed neutronNeutron emissionAstrophysics::High Energy Astrophysical PhenomenaNuclear dataNuclear TheoryMeasure (physics)General Physics and AstronomyNeutronAstrophysics01 natural sciencesNuclear physics0103 physical sciencesNeutronNuclear Experiment010306 general physics:Energies::Energia nuclear [Àrees temàtiques de la UPC]NeutronsPhysics:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsNuclear dataNeutron capture:Física::Astronomia i astrofísica [Àrees temàtiques de la UPC]r-processDelayed neutronActa Physica Polonica B
researchProduct

β-delayed neutron emission of r-process nuclei at the N = 82 shell closure

2021

This experiment was performed at RI Beam Factory operated by RIKEN Nishina Center and CNS, University of Tokyo. O.H, T.D, P.J.W, C.G.B, C.J.G and D.K would like to thank STFC, UK for support. This research was sponsored in part by the Office of Nuclear Physics, U.S. Department of Energy under Award No. DE-FG02-96ER40983 (UTK) and DEAC05-00OR22725 (ORNL), and by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Award No. DENA0002132. This work was supported by National Science Foundation under Grants No. PHY-1430152 (JINA Center for the Evolution of the Elements), No. PHY-1565546 (NSCL), and No. PHY-1714153 (Central Michigan Uni…

Nuclear and High Energy PhysicsNational securityQC1-999ß-delayedNuclear physicsLibrary scienceNeutrons--Capturaβ-delayed neutron emission7. Clean energy01 natural sciencesNeutrons--CaptureAstrophysical0103 physical sciencesEuropean commissionr-processimportant010306 general physicsChinaNuclear ExperimentNeutron emissionr-processPhysics:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsbusiness.industryr-processPhysicsChinese academy of sciencesbeta-delayed neutron emissionResearch councilChristian ministryFísica nuclearNational laboratorybusinessAdministration (government)Physics Letters B
researchProduct

β decay of In133 : γ emission from neutron-unbound states in Sn133

2019

Excited states in Sn-133 were investigated through the beta decay of In-133 at the ISOLDE facility. The ISOLDE Resonance Ionization Laser Ion Source (RILIS) provided isomer-selective ionization for In-133, allowing us to study separately, and in detail, the beta-decay branch of In-133 J(pi)= (9/2(+)) ground state and its J(pi) = (1/2(-)) isomer.Thanks to the large spin difference of the two beta-decaying states of In-133, it is possible to investigate separately the lower and higher spin states in the daughter, Sn-133, and thus to probe independently different single-particle and single-hole levels. We report here new gamma transitions observed in the decay of In-133, including those assign…

PhysicsSpin states010308 nuclear & particles physicsGamma ray01 natural sciences7. Clean energyBeta decayIon source3. Good healthIonizationExcited state0103 physical sciencesNeutronAtomic physics010306 general physicsGround statePhysical Review C
researchProduct

Nature of seniority symmetry breaking in the semimagic nucleus $^{94}Ru$

2022

Physical review / C 105(3), L031304 (2022). doi:10.1103/PhysRevC.105.L031304

Nuclear Theoryddc:530Nuclear Experimentydinfysiikka530
researchProduct

First ß-decay spectroscopy of 135In and new ß-decay branches of 134In

2021

researchProduct

First β-decay spectroscopy of $^{135}$In and new $β$-decay branches of $^{134}$In

2021

International audience; The $\beta$ decay of the neutron-rich $^{134}$In and $^{135}$In was investigated experimentally in order to provide new insights into the nuclear structure of the tin isotopes with magic proton number $Z=50$ above the $N=82$ shell. The $\beta$-delayed $\gamma$-ray spectroscopy measurement was performed at the ISOLDE facility at CERN, where indium isotopes were selectively laser-ionized and on-line mass separated. Three $\beta$-decay branches of $^{134}$In were established, two of which were observed for the first time. Population of neutron-unbound states decaying via $\gamma$ rays was identified in the two daughter nuclei of $^{134}$In, $^{134}$Sn and $^{133}$Sn, at…

isotoopitmittausAstrophysics::High Energy Astrophysical PhenomenaspektroskopiaNuclear TheoryNuclear Physics - Experimentneutronit[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]fysiikkaydinfysiikkaNuclear ExperimentNuclear Experiment
researchProduct

Beta-delayed neutron spectroscopy of $^{133}$In

2023

The decay properties of In133 were studied in detail at the ISOLDE Decay Station. The implementation of the Resonance Ionization Laser Ion Source allowed separate measurements of its 9/2+ ground state (In133g) and 1/2− isomer (In133m). With the use of β-delayed neutron and γ spectroscopy, the decay strengths above the neutron separation energy were quantified in this neutron-rich nucleus for the first time. The allowed Gamow-Teller transition 9/2+→7/2+ was located at 5.93 MeV in the In133g decay with a logft=4.7(1). In addition, several neutron-unbound states were populated at lower excitation energies by the first-forbidden decays of In133g,m. We assigned spins and parities to those neutro…

FOS: Physical sciencesNuclear Physics - ExperimentNuclear Experiment (nucl-ex)nucl-exNuclear Experiment
researchProduct

First β -decay spectroscopy of In 135 and new β -decay branches of In 134

Physical Review C
researchProduct

Detailed spectroscopy of doubly magic $^{132}$Sn

2020

The structure of the doubly magic $^{132}_{50}$Sn$_{82}$ has been investigated at the ISOLDE facility at CERN, populated both by the $\beta^-$decay of $^{132}$In and $\beta^-$-delayed neutron emission of $^{133}$In. The level scheme of $^{132}$Sn is greatly expanded with the addition of 68 $\gamma$-transitions and 17 levels observed for the first time in the $\beta$ decay. The information on the excited structure is completed by new $\gamma$-transitions and states populated in the $\beta$-n decay of $^{133}$In. Improved delayed neutron emission probabilities are obtained both for $^{132}$In and $^{133}$In. Level lifetimes are measured via the Advanced Time-Delayed $\beta\gamma\gamma$(t) fas…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesNuclear Physics - Experiment[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Experiment (nucl-ex)nucl-exNuclear StructureNuclear Experiment
researchProduct

High-sensitivity study of levels in 30Al following β decay of 30Mg

2016

γ -ray and fast-timing spectroscopy were used to study levels in 30Al populated following the β− decay of 30Mg. Five new transitions and three new levels were located in 30Al. A search was made to identify the third 1+ state expected at an excitation energy of ∼2.5 MeV. Two new levels were found, at 3163.9 and 3362.5 keV, that are firm candidates for this state. Using the advanced time-delayed (ATD) βγγ (t) method we have measured the lifetime of the 243.8-keV state to be T1/2 = 15(4) ps, which implies that the 243.8-keV transition is mainly of M1 character. Its fast B(M1; 2+ → 3+) value of 0.10(3) W.u. is in very good agreement with the USD shell-model prediction of 0.090 W.u. The 1801.5-k…

neutron-rich nucleibeta decayalumiinimagnesiumexcited statesPhysical Review C
researchProduct

First -decay spectroscopy of and new -decay branches of

2021

19 pags., 14 figs., 3 tabs.

researchProduct