0000000000521831
AUTHOR
F. Dechery
In-beam spectroscopy with intense ion beams: Evidence for a rotational structure in246Fm
The rotational structure of ${}^{246}$Fm has been investigated using in-beam $\ensuremath{\gamma}$-ray spectroscopic techniques. The experiment was performed using the JUROGAMII germanium detector array coupled to the gas-filled recoil ion transport unit (RITU) and the gamma recoil electron alpha tagging (GREAT) focal plane detection system. Nuclei of ${}^{246}$Fm were produced using a 186 MeV beam of ${}^{40}$Ar impinging on a ${}^{208}$Pb target. The JUROGAMII array was fully instrumented with Tracking Numerical Treatment 2 Dubna (TNT2D) digital acquisition cards. The use of digital electronics and a rotating target allowed for unprecedented beam intensities of up to 71 particle-nanoamper…
First prompt in-beam gamma-ray spectroscopy of a superheavy element: the 256Rf
Using state-of-the-art γ-ray spectroscopic techniques, the first rotational band of a superheavy element, extending up to a spin of 20 ¯h, was discovered in the nucleus 256Rf. To perform such an experiment at the limits of the present instrumentation, several developments were needed. The most important of these developments was of an intense isotopically enriched 50Ti beam using the MIVOC method. The experimental set-up and subsequent analysis allowed the 256Rf ground-state band to be revealed. The rotational properties of the band are discussed and compared with neighboring transfermium nuclei through the study of their moments of inertia. These data suggest that there is no evidence of a…
Shell-Structure and Pairing Interaction in Superheavy Nuclei: Rotational Properties of the Z=104 Nucleus (256)Rf
The rotational band structure of the Z ¼ 104 nucleus 256Rf has been observed up to a tentative spin of 20@ using state-of-the-art -ray spectroscopic techniques. This represents the first such measurement in a superheavy nucleus whose stability is entirely derived from the shell-correction energy. The observed rotational properties are compared to those of neighboring nuclei and it is shown that the kinematic and dynamic moments of inertia are sensitive to the underlying single-particle shell structure and the specific location of high-j orbitals. The moments of inertia therefore provide a sensitive test of shell structure and pairing in superheavy nuclei which is essential to ensure the val…
The 48Ca+181Ta reaction: Cross section studies and investigation of neutron-deficient 86 ≤ Z ≤ 93 isotopes
© 2019 Fusion-evaporation reactions with the doubly magic projectile 48 Ca were used to access neutron-deficient nuclei around neptunium at the velocity filter SHIP, and investigated using the COMPASS decay spectroscopy station. With the use of digital electronics, several isotopes produced via neutron, proton, and α evaporation channels were identified by establishing correlated α-decay chains with short-lived sub-μs members. Data are given on decay chains stemming from 225,226 Np, 225 U, and 222,223 Pa. New information on the isotopes 225,226 Np and 222 Pa was obtained. Production cross sections of nuclei in the region using a variety of projectiles are discussed. The measured production …
COMPASS—A COMPAct decay spectroscopy set-up
Abstract A compact silicon detector array with high spatial granularity and fast, fully digital data recording has been developed and commissioned for the investigation of heavy and superheavy nuclear species. The detector array can be combined in close geometry with large volume germanium detectors. It offers comprehensive particle and photon coincidence and correlation spectroscopy by highly efficient evaporation residue, α , γ , conversion electron and X-ray detection supported by the high granularity of the implantation chip. Access to fast decay events in the sub-microsecond region is made possible by the fast timing properties of the digital signal processing. A novel Si-chip support …
First prompt in-beam γ-ray spectroscopy of a superheavy element: the256Rf
Using state-of-the-art γ-ray spectroscopic techniques, the first rotational band of a superheavy element, extending up to a spin of 20 , was discovered in the nucleus 256Rf. To perform such an experiment at the limits of the present instrumentation, several developments were needed. The most important of these developments was of an intense isotopically enriched 50Ti beam using the MIVOC method. The experimental set-up and subsequent analysis allowed the 256Rf ground-state band to be revealed. The rotational properties of the band are discussed and compared with neighboring transfermium nuclei through the study of their moments of inertia. These data suggest that there is no evidence of a s…
Production cross section and decay study of Es243 and Md249
In the study of the odd-$Z$, even-$N$ nuclei $^{243}$Es and $^{249}$Md, performed at the University of Jyv\"askyl\"a, the fusion-evaporation reactions $^{197}$Au($^{48}$Ca,2$n$)$^{243}$Es and $^{203}$Tl($^{48}$Ca,2$n$)$^{249}$Md have been used for the first time. Fusion-evaporation residues were selected and detected using the RITU gas-filled separator coupled with the focal-plane spectrometer GREAT. For $^{243}$Es, the recoil decay correlation analysis yielded a half-life of $24 \pm 3$s, and a maximum production cross section of $37 \pm 10$ nb. In the same way, a half-life of $26 \pm 1$ s, an $\alpha$ branching ratio of 75 $\pm$ 5%, and a maximum production cross section of 300 $\pm$ 80 nb…
Shell-Structure and Pairing Interaction in Superheavy Nuclei: Rotational Properties of theZ=104NucleusRf256
The rotational band structure of the $Z=104$ nucleus $^{256}\mathrm{Rf}$ has been observed up to a tentative spin of $20\ensuremath{\hbar}$ using state-of-the-art $\ensuremath{\gamma}$-ray spectroscopic techniques. This represents the first such measurement in a superheavy nucleus whose stability is entirely derived from the shell-correction energy. The observed rotational properties are compared to those of neighboring nuclei and it is shown that the kinematic and dynamic moments of inertia are sensitive to the underlying single-particle shell structure and the specific location of high-$j$ orbitals. The moments of inertia therefore provide a sensitive test of shell structure and pairing i…