0000000000522679
AUTHOR
David A. Fike
Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars
Abstract Impure reworked evaporitic sandstones, preserved on Meridiani Planum, Mars, are mixtures of roughly equal amounts of altered siliciclastic debris, of basaltic provenance (40 ± 10% by mass), and chemical constituents, dominated by evaporitic minerals (jarosite, Mg-, Ca-sulfates ± chlorides ± Fe-, Na-sulfates), hematite and possibly secondary silica (60 ± 10%). These chemical constituents and their relative abundances are not an equilibrium evaporite assemblage and to a substantial degree have been reworked by aeolian and subaqueous transport. Ultimately they formed by evaporation of acidic waters derived from interaction with olivine-bearing basalts and subsequent diagenetic alterat…
Soils of Eagle crater and Meridiani Planum at the Opportunity Rover landing site.
The soils at the Opportunity site are fine-grained basaltic sands mixed with dust and sulfate-rich outcrop debris. Hematite is concentrated in spherules eroded from the strata. Ongoing saltation exhumes the spherules and their fragments, concentrating them at the surface. Spherules emerge from soils coated, perhaps from subsurface cementation, by salts. Two types of vesicular clasts may represent basaltic sand sources. Eolian ripples, armored by well-sorted hematite-rich grains, pervade Meridiani Planum. The thickness of the soil on the plain is estimated to be about a meter. The flatness and thin cover suggest that the plain may represent the original sedimentary surface.