0000000000522931
AUTHOR
Johannes Elbert
Redox-Responsive Block Copolymers: Poly(vinylferrocene)-b-poly(lactide) Diblock and Miktoarm Star Polymers and Their Behavior in Solution
The synthesis of diblock and miktoarm star polymers containing poly(vinylferrocene) (PVFc) and poly(l-lactide) (PLA) blocks is introduced. End functionalization of PVFc was carried out via end capping of living carbanionic PVFc chains with benzyl glycidyl ether (BGE). By hydrogenolysis of the benzyl protecting group a dihydroxyl end-functionalized PVFc was obtained. Both monohydroxyl- and dihydroxyl-functionalized PVFcs have been utilized as macroinitiators for the subsequent polymerization of l-lactide via catalytic ring-opening polymerization. A series of block copolymers and AB2 miktoarm star polymers was synthesized with varied PLA chain lengths. All polymers were characterized in detai…
Polyvinylferrocene-Based Amphiphilic Block Copolymers Featuring Functional Junction Points for Cross-Linked Micelles
The synthesis of high-molecular-weight, well-defined poly(vinylferrocene)-block-poly(ethylene glycol) (PVFc-b-PEG) diblock copolymers (Mn = 13 000–44 000 g mol–1; Đ = 1.29–1.34) with precisely one allyl group at the junction point is introduced. Allyl glycidyl ether (AGE) was used to end-functionalize PVFc, resulting in hydroxyl functional macroinitiators for the oxyanionic polymerization of ethylene oxide. The self-assembly behavior of the amphiphilic PVFc-b-PEG copolymers in water has been investigated in a detailed manner, using dynamic light scattering (DLS) and transmission electron microscopy (TEM). The redox activity of the PVFc block was confirmed by UV/vis spectroscopy, while cyclo…