0000000000523082

AUTHOR

Antonio Crespo-poveda

Acoustically driven arrayed waveguide grating.

We demonstrate compact tunable phased-array wavelength-division multiplexers driven by surface acoustic waves (SAWs) in the low GHz range. The devices comprise two couplers, which respectively split and combine the optical signal, linked by an array of single-mode waveguides (WGs). Two different layouts are presented, in which multi-mode interference couplers or free propagating regions were separately employed as couplers. The multiplexers operate on five equally distributed wavelength channels, with a spectral separation of 2 nm. A standing SAW modulates the refractive index of the arrayed WGs. Each wavelength component periodically switches paths between the output channel previously asi…

research product

Synchronized photonic modulators driven by surface acoustic waves

Photonic modulators are one of the most important elements of integrated photonics. We have designed, fabricated, and characterized a tunable photonic modulator consisting of two 180 degrees-dephased output waveguide channels, driven by a surface acoustic wave in the GHz frequency range built on (Al,Ga)As. Odd multiples of the fundamental driven frequency are enabled by adjusting the applied acoustic power. A good agreement between theory and experimental results is achieved. The device can be used as a building block for more complex integrated functionalities and can be implemented in several material platforms. (C) 2013 Optical Society of America

research product

Tunable arrayed waveguide grating driven by surface acoustic waves

We present a design approach for compact reconfigurable phased-array wavelength-division multiplexing (WDM) devices with N access waveguides (WGs) based on multimode interference (MMI) couplers. The proposed devices comprise two MMI couplers which are employed as power splitters and combiners, respectively, linked by an array of N single-mode WGs. First, passive devices are explored. Taking advantage of the transfer phases between the access ports of the MMI couplers, we derive very simple phase relations between the arms that provide wavelength dispersion at the output plane of the devices. When the effective refractive index of the WGs is modulated with the proper relative optical phase d…

research product

Compact acousto-optic multimode interference device in (Al,Ga)As.

Multimode interference (MMI) devices are key components in modern integrated photonic circuits. Here, we present acoustically tuned optical switches on an (Al,Ga)As platform that enable robust, compact and fast response systems improving on recently demonstrated technology. The device consists of a 2 × 2 MMI device fine-tuned in its center region by a focused surface acoustic wave (SAW) beam working in the low GHz range. In this way, we can tune the refractive index profile over a narrow modulation region and thus control the optical switching behaviour via the applied SAW intensity. Direct tuning of the MMI device avoids losses and phase errors inherent to arrayed waveguide based switches,…

research product

Reconfigurable photonic routers based on multimode interference couplers

We present a design approach for compact reconfigurable light routers with N access waveguides (WGs) based on multimode interference (MMI) couplers. The proposed devices comprise two MMI couplers, which are employed as power splitters and combiners, respectively, linked by an array of N single-mode WGs. When the effective refractive index of the WGs is modulated with the proper relative optical phase difference, the light can switch paths between the preset output channel and the remaining output WGs. Taking advantage of the transfer phases between the access ports of the MMI couplers, we derive very simple phase relations between the modulated WGs that enable the reconfiguration of the out…

research product