0000000000523972

AUTHOR

Daisuke Suzuki

showing 5 related works from this author

MOA-2011-BLG-293Lb: A test of pure survey microlensing planet detections

2012

Because of the development of large-format, wide-field cameras, microlensing surveys are now able to monitor millions of stars with sufficient cadence to detect planets. These new discoveries will span the full range of significance levels including planetary signals too small to be distinguished from the noise. At present, we do not understand where the threshold is for detecting planets. MOA-2011-BLG-293Lb is the first planet to be published from the new surveys, and it also has substantial followup observations. This planet is robustly detected in survey+followup data (Delta chi^2 ~ 5400). The planet/host mass ratio is q=5.3+/- 0.2*10^{-3}. The best fit projected separation is s=0.548+/-…

PhysicsEarth and Planetary Astrophysics (astro-ph.EP)010308 nuclear & particles physicsAstronomyFOS: Physical sciencesAstronomy and AstrophysicsGravitational microlensing01 natural sciencesTest (assessment)Graduate researchStarsSpace and Planetary SciencePlanet0103 physical sciences010303 astronomy & astrophysicsAstrophysics - Earth and Planetary Astrophysics
researchProduct

A brown dwarf orbiting an M-dwarf:MOA 2009-BLG-411L

2012

Context. Caustic crossing is the clearest signature of binary lenses in microlensing. In the present context, this signature is diluted by the large source star but a detailed analysis has allowed the companion signal to be extracted.Aims. MOA 2009-BLG-411 was detected on August 5, 2009 by the MOA-Collaboration. Alerted as a high-magnification event, it was sensitive to planets. Suspected anomalies in the light curve were not confirmed by a real-time model, but further analysis revealed small deviations from a single lens extended source fit.Methods. Thanks to observations by all the collaborations, this event was well monitored. We first decided to characterize the source star properties b…

Brown dwarfContext (language use)Astrophysicsgravitational lensing: microAstrophysics::Cosmology and Extragalactic AstrophysicsGravitational microlensing01 natural sciencesSettore FIS/05 - Astronomia e AstrofisicaPlanet0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsstars: individual: MOA 2009-BLG-411L010308 nuclear & particles physicsAstronomyMOA 2009-BLG-411L; gravitational lensing; starsAstronomy and AstrophysicsRadiusLight curveGalaxyGravitational lensbinaries: generalSpace and Planetary ScienceAstrophysics::Earth and Planetary Astrophysicsbinaries: general; gravitational lensing: micro; stars: individual: MOA 2009-BLG-411L
researchProduct

Persistence of the Z=28 shell gap in A=75 isobars: Identification of a possible (1/2−) μs isomer in Co75 and β decay to Ni75

2021

Background: The evolution of shell structure around doubly-magic exotic nuclei is of great interest in nuclear physics and astrophysics. In the `south-west' region of $^{78}$Ni, the development of deformation might trigger a major shift in our understanding of explosive nucleosynthesis. To this end, new spectroscopic information on key close-lying nuclei is very valuable. Purpose: We intend to measure the isomeric and $\beta$ decay of $^{75}$Co, with one proton- and two neutron-holes relative to $^{78}$Ni, to access new nuclear structure information in $^{75}$Co and its $\beta$-decay daughters $^{75}$Ni and $^{74}$Ni. Methods: The nucleus $^{75}$Co is produced in relativistic in-flight fiss…

PhysicsProton010308 nuclear & particles physicsCenter (category theory)Nuclear structureNuclear isomer7. Clean energy01 natural sciencesSpectral lineNuclear physicsNucleosynthesisExcited state0103 physical sciencesIsobar010306 general physicsPhysical Review C
researchProduct

$^{78}$Ni revealed as a doubly magic stronghold against nuclear deformation

2019

Nuclear magic numbers, which emerge from the strong nuclear force based on quantum chromodynamics, correspond to fully occupied energy shells of protons, or neutrons inside atomic nuclei. Doubly magic nuclei, with magic numbers for both protons and neutrons, are spherical and extremely rare across the nuclear landscape. While the sequence of magic numbers is well established for stable nuclei, evidence reveals modifications for nuclei with a large proton-to-neutron asymmetry. Here, we provide the first spectroscopic study of the doubly magic nucleus $^{78}$Ni, fourteen neutrons beyond the last stable nickel isotope. We provide direct evidence for its doubly magic nature, which is also predi…

1000ProtonNuclear Theorymedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaStrong interactionNuclear TheoryFOS: Physical sciences01 natural sciencesAsymmetryNuclear Theory (nucl-th)Magic number (programming)0103 physical sciencesEffective field theoryPhysics::Atomic and Molecular ClustersNeutronNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear Experimentmedia_commonPhysics[PHYS]Physics [physics]Multidisciplinary010308 nuclear & particles physicsMagic (programming)Atomic nucleusAtomic physics
researchProduct

The WFIRST Exoplanet Microlensing Survey

2018

The Wide Field Infrared Survey Telescope (WFIRST) was the top ranked large space mission in the 2010 New Worlds, New Horizons decadal survey, and it was formed by merging the science programs of 3 different mission concepts, including the Microlensing Planet Finder (MPF) concept (Bennett \etal\ 2010). The WFIRST science program (Spergel \etal\ 2015) consists of a general observer program, a wavefront controlled technology program, and two targeted science programs: a program to study dark energy, and a statistical census of exoplanets with a microlensing survey, which uses nearly one quarter of WFIRST's observing time in the current design reference mission. The New Worlds, New Horizons (de…

Earth and Planetary Astrophysics (astro-ph.EP)FOS: Physical sciencesAstrophysics - Earth and Planetary Astrophysics
researchProduct