0000000000525076

AUTHOR

B. Kim

showing 33 related works from this author

HΛ3 and H‾Λ¯3 production in Pb–Pb collisions at sNN=2.76 TeV

2019

Abstract The production of the hypertriton nuclei H Λ 3 and H ‾ Λ ¯ 3 has been measured for the first time in Pb–Pb collisions at s NN = 2.76  TeV with the ALICE experiment at LHC. The p T -integrated H Λ 3 yield in one unity of rapidity, d N / d y × B . R . ( H Λ 3 → He 3 , π − ) = ( 3.86 ± 0.77 ( stat. ) ± 0.68 ( syst. ) ) × 10 − 5 in the 0–10% most central collisions, is consistent with the predictions from a statistical thermal model using the same temperature as for the light hadrons. The coalescence parameter B 3 shows a dependence on the transverse momentum, similar to the B 2 of deuterons and the B 3 of 3He nuclei. The ratio of yields S 3 = H Λ 3 / ( He 3 × Λ / p ) was measured to b…

PhysicsNuclear and High Energy PhysicsLarge Hadron Collider010308 nuclear & particles physicsNuclear TheoryHadron7. Clean energy01 natural sciencesExponential functionBaryonNuclear physicsHigh energy nuclear physicsDeuterium0103 physical sciencesMass spectrumHigh Energy Physics::ExperimentRapidityImpact parameterNuclear Experiment010306 general physicsGlauberHypertritonPhysics Letters B
researchProduct

Freeze-out radii extracted from three-pion cumulants in pp, p–Pb and Pb–Pb collisions at the LHC

2014

In high-energy collisions, the spatio-temporal size of the particle production region can be measured using the Bose-Einstein correlations of identical bosons at low relative momentum. The source radii are typically extracted using two-pion correlations, and characterize the system at the last stage of interaction, called kinetic freeze-out. In low-multiplicity collisions, unlike in high-multiplicity collisions, two-pion correlations are substantially altered by background correlations, e.g. mini-jets. Such correlations can be suppressed using three-pion cumulant correlations. We present the first measurements of the size of the system at freeze-out extracted from three-pion cumulant correl…

kinetic freezout heavy-ion experiments particle cummulantsMULTIPLICITY DEPENDENCEfreeze-out radius; three-pion cumulants; pp; p–Pb and Pb–Pb collisionsPb-Pb and p-Pb collisions at the LHCpp01 natural sciencesHigh Energy Physics - Experimentlaw.inventionColor-glass condensateHigh Energy Physics - Experiment (hep-ex)ALICElawheavy-ion experiments[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]PbPbNuclear Experiment (nucl-ex)[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]kinetic freezoutNuclear ExperimentNuclear ExperimentBosonPhysicsLarge Hadron ColliderPhysicsfreeze-out radiusHEAVY-ION GENERATORlcsh:QC1-999:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]Three-pion cumulant correlations3. Good healthPRIRODNE ZNANOSTI. Fizika.BOSE-EINSTEIN CORRELATIONSParticle Physics - ExperimentNuclear and High Energy PhysicsParticle physics[PHYS.NEXP] Physics [physics]/Nuclear Experiment [nucl-ex]QC1-999particle cummulantsVDP::Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431FOS: Physical sciencesALICE; pp; pPb; PbPb; Bose-Einstein; correlation[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Kinetic energyp-pNuclear physicsBOSE-EINSTEIN CORRELATIONS; RANGE ANGULAR-CORRELATIONS; HEAVY-ION GENERATOR; MULTIPLICITY DEPENDENCEPion0103 physical sciencesNuclear Physics - Experimentddc:530Multiplicity (chemistry)010306 general physicsta114p–Pb and Pb–Pb collisionsVDP::Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431010308 nuclear & particles physics:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]ALICE experimentBose–Einstein correlationsBose-EinsteinNATURAL SCIENCES. Physics.correlationpPbthree-pion cumulantslcsh:PhysicsBose–Einstein condensateRANGE ANGULAR-CORRELATIONSPhysics Letters B
researchProduct

Transverse momentum spectra and nuclear modification factors of charged particles in pp, p-Pb and Pb-Pb collisions at the LHC

2018

We report the measured transverse momentum ($p_{\rm T}$) spectra of primary charged particles from pp, p-Pb and Pb-Pb collisions at a center-of-mass energy $\sqrt{s_{\rm NN}} = 5.02$ TeV in the kinematic range of $0.15<p_{\rm T}<50$ GeV/$c$ and $|\eta|< 0.8$. A significant improvement of systematic uncertainties motivated the reanalysis of data in pp and Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV, as well as in p-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV, which is also presented. Spectra from Pb-Pb collisions are presented in nine centrality intervals and are compared to a reference spectrum from pp collisions scaled by the number of binary nucleon-nucleon collisions. For cent…

:Kjerne- og elementærpartikkelfysikk: 431 [VDP]heavy ion: scatteringHadronmomentum [up]binaryMULTIPLICITY DEPENDENCEPartonheavy ion: scattering ; transverse momentum: momentum spectrum ; quantum chromodynamics: matter ; parton: energy loss ; momentum: high ; up: momentum ; pp: scattering ; nucleus ; charged particle ; suppression ; energy dependence ; impact parameter ; transport theory ; nucleon nucleon ; CERN LHC Coll ; kinematics ; binarymomentum spectrum [transverse momentum]hiukkasfysiikkaKAONnucl-ex01 natural sciences7. Clean energy2760 GeV-cms/nucleonHigh Energy Physics - Experimenttransverse momentum: momentum spectrumHeavy Ion Experiments; Heavy-ion collision; Nuclear and high energy physicsHigh Energy Physics - Experiment (hep-ex)quark gluon plasma Heavy Ion Experiments Heavy-ion collisionnucleon nucleonHeavy-ion collisionhigh [momentum]PIONscattering [p p]transport theory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex][ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Experiment (nucl-ex)impact parameterNuclear ExperimentNuclear ExperimentQCD matterparticle production and suppressionPhysicsPhysicsHADRONSheavy ion experiments heavy ion collision particle production and suppressionHeavy Ion Experiments; Heavy-ion collisionVDP::Kjerne- og elementærpartikkelfysikk: 431suppressionCENTRALITY DEPENDENCEcharged particleCharged particleMULTIPLICITY DEPENDENCE; CENTRALITY DEPENDENCE; HADRONS; SUPPRESSION; MODEL; KAON; PIONquark gluon plasma:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]:Nuclear and elementary particle physics: 431 [VDP]CERN LHC CollVDP::Nuclear and elementary particle physics: 431kinematicsHeavy Ion ExperimentImpact parameterParticle Physics - ExperimentHeavy Ion Experiments Heavy-ion collision Nuclear and High Energy Physics.Nuclear and High Energy Physicsp p: scatteringnucleon nucleon: scatteringenergy loss [parton]FOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]114 Physical sciencesenergy dependenceNuclear physicsPionHeavy Ion Experiments[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]scattering [heavy ion]0103 physical sciencesmatter [quantum chromodynamics]lcsh:Nuclear and particle physics. Atomic energy. Radioactivityddc:530Nuclear Physics - Experiment5020 GeV-cms/nucleonup: momentum010306 general physicsp nucleus: scatteringquantum chromodynamics: matterta114010308 nuclear & particles physicshep-exnucleus:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]Nuclear and high energy physicsheavy ion collisionMODEL* Automatic Keywords *13. Climate actionmomentum: highQuark–gluon plasmalcsh:QC770-798High Energy Physics::Experimentparton: energy lossEnergy (signal processing)experimental results
researchProduct

Dielectron and heavy-quark production in inelastic and high-multiplicity proton–proton collisions at s=13TeV

2018

The measurement of dielectron production is presented as a function of invariant mass and transverse momentum (pT) at midrapidity (|ye|&lt;0.8) in proton–proton (pp) collisions at a centre-of-mass energy of s=13 TeV. The contributions from light-hadron decays are calculated from their measured cross sections in pp collisions at s=7 TeV or 13 TeV. The remaining continuum stems from correlated semileptonic decays of heavy-flavour hadrons. Fitting the data with templates from two different MC event generators, PYTHIA and POWHEG, the charm and beauty cross sections at midrapidity are extracted for the first time at this collision energy: dσcc¯/dy|y=0=974±138(stat.)±140(syst.)±214(BR)μb and dσbb…

Quantum chromodynamicsQuarkPhysicsNuclear and High Energy PhysicsPhotonProton010308 nuclear & particles physicsHadronMultiplicity (mathematics)01 natural sciencesNuclear physics0103 physical sciencesHigh Energy Physics::ExperimentInvariant massCharm (quantum number)Nuclear Experiment010306 general physicsPhysics Letters B
researchProduct

Charged jet cross section and fragmentation in proton-proton collisions at √s = 7 TeV

2019

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. We report the differential charged jet cross section and jet fragmentation distributions measured with the ALICE detector in proton-proton collisions at a center-of-mass energy √s=7  TeV. Jets with pseudorapidity |η|40  GeV/c, the pythia calculations also agree with the measured charged jet cross section. pythia6 simulations describe the fragmentation distributions to 15%. Larger discrepancies are observed for pythia8. SCOAP

:Kjerne- og elementærpartikkelfysikk: 431 [VDP]Physics and Astronomy (miscellaneous)fragmentation [jet]Astrophysics::High Energy Astrophysical Phenomenameasured [cross section]transverse momentumhiukkasfysiikka01 natural sciencesscattering [pp]Nuclear physicsALICEFragmentation (mass spectrometry)0103 physical sciencesjet fragmentation010306 general physicsNuclear ExperimentPhysicsQuantum chromodynamicsPP COLLISIONSta114010308 nuclear & particles physicsPB COLLISIONS:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]TRANSVERSE-MOMENTUMVDP::Kjerne- og elementærpartikkelfysikk: 431resolution16. Peace & justicecharged particlejet cross sectionCharged particleNATURAL SCIENCES. Physics.ddc::Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]PRIRODNE ZNANOSTI. Fizika.:Nuclear and elementary particle physics: 431 [VDP]pp: scattering ; jet: fragmentation ; cross section: measured ; transverse momentum ; charged particle ; resolution ; PYTHIA ; ALICEVDP::Nuclear and elementary particle physics: 431PseudorapidityTransverse momentumPYTHIAHigh Energy Physics::Experimentproton-proton collisionsTRANSVERSE-MOMENTUM; PP COLLISIONS; PB COLLISIONS; PARTICLEPARTICLEPhysical Review D
researchProduct

The ALICE Transition Radiation Detector: Construction, operation, and performance

2018

The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/$c$ in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both …

Physics - Instrumentation and Detectors:Kjerne- og elementærpartikkelfysikk: 431 [VDP]TRPhysics::Instrumentation and DetectorsCOLLIDING BEAM EXPERIMENT; ELECTRON IDENTIFICATION; DRIFT CHAMBERS; TRD PROTOTYPES; ENERGY-LOSS; GEV/C; COLLISIONS; PIONSparticle identification [electron]Ionisation energy loTracking (particle physics)Transition radiation detector ; Multi-wire proportional drift chamber ; Fibre/foam sandwich radiator ; Xenon-based gas mixture ; Tracking ; Ionisation energy loss ; dE/dx ; TR ; Electron-pion identification ; Neural network ; Trigger01 natural sciencesParticle identificationdesign [detector]ALICEDetectors and Experimental Techniquesmomentum resolutionNuclear Experimentphysics.ins-detInstrumentationPhysicsPROTOTYPESLarge Hadron Collidertransition radiation detector; multi-wire proportional drift chamber;; fibre/foam sandwich radiator; Xenon-based gas mixture; tracking;; Ionisation energy loss; dE/dx; TR; electron-pion identification; Neural; network; trigger; COLLIDING BEAM EXPERIMENT; ELECTRON IDENTIFICATION; DRIFT CHAMBERS; TRD; PROTOTYPES; ENERGY-LOSS; GEV/C; COLLISIONS; PIONStrack data analysisTrackingPIONSDetectorVDP::Kjerne- og elementærpartikkelfysikk: 431Instrumentation and Detectors (physics.ins-det)trackingtransition radiation detector:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]ddc:PRIRODNE ZNANOSTI. Fizika.Xenon-based gas mixtureTransition radiation detector:Nuclear and elementary particle physics: 431 [VDP]VDP::Nuclear and elementary particle physics: 431GEV/Cmulti-wire proportional drift chamberperformanceParticle physicsNuclear and High Energy PhysicsCOLLISIONSelectron-pion identificationneural networkInstrumentationFOS: Physical sciencesTransition radiation detector; Multi-wire proportional drift chamber; Fibre/foam sandwich radiator; Xenon-based gas mixture; Tracking; Ionisation energy loss; dE/dx; TR; Electron-pion identification; Neural network; Trigger114 Physical sciencesMomentumNuclear physicsionisation energy loss0103 physical sciencesdE/dxDRIFT CHAMBERSdE/dx Electron-pion identification Fibre/foam sandwich radiator Ionisation energy loss Multi-wire proportional drift chamber Neural network TR Tracking Transition radiation detector Trigger Xenon-based gas mixture Nuclear and High Energy Physics Instrumentation.ddc:530[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]seuranta010306 general physicsdetector: designNuclear and High Energy PhysicNeuralCOLLIDING BEAM EXPERIMENTTRD PROTOTYPESelectron: particle identificationta114010308 nuclear & particles physics:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]fibre/foam sandwich radiatortriggercalibrationNATURAL SCIENCES. Physics.Neural networkdE/dx; Electron-pion identification; Fibre/foam sandwich radiator; Ionisation energy loss; Multi-wire proportional drift chamber; Neural network; TR; Tracking; Transition radiation detector; Trigger; Xenon-based gas mixtureTriggerdE/dx; Electron-pion identification; Fibre/foam sandwich radiator; Ionisation energy loss; Multi-wire proportional drift chamber; Neural network; TR; Tracking; Transition radiation detector; Trigger; Xenon-based gas mixture; Nuclear and High Energy Physics; InstrumentationnetworkELECTRON IDENTIFICATIONTRDHigh Energy Physics::ExperimentALICE (propellant)ENERGY-LOSSNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Centrality, rapidity and transverse momentum dependence of J/ψ suppression in Pb–Pb collisions at sNN=2.76 TeV

2014

The inclusive J/.nuclear modification factor (R-AA) in Pb-Pb collisions at root(NN)-N-S = 2.76TeVhas been measured by ALICE as a function of centrality in the e+ e-decay channel at mid-rapidity (| y| < 0.8) and as a function of centrality, transverse momentum and rapidity in the + -decay channel at forward-rapidity (2.5 < y < 4). The J/.yields measured in Pb-Pb are suppressed compared to those in ppcollisions scaled by the number of binary collisions. The RAAintegrated over a centrality range corresponding to 90% of the inelastic Pb-Pb cross section is 0.72 - 0.06(stat.) - 0.10(syst.) at mid-rapidity and 0.58 - 0.01(stat.) - 0.09(syst.) at forward-rapidity. At low transverse momentum, signi…

Nuclear physicsPhysicsNuclear and High Energy PhysicsParticle physicsTransverse momentumModification factorRapidityCentralityLower energyCharm quarkPhysics Letters B
researchProduct

Searches for transverse momentum dependent flow vector fluctuations in Pb-Pb and p-Pb collisions at the LHC

2017

The measurement of azimuthal correlations of charged particles is presented for Pb-Pb collisions at $\sqrt{s_{\rm NN}}=$ 2.76 TeV and p-Pb collisions at $\sqrt{s_{\rm NN}}=$ 5.02 TeV with the ALICE detector at the CERN Large Hadron Collider. These correlations are measured for the second, third and fourth order flow vector in the pseudorapidity region $|��|&lt;0.8$ as a function of centrality and transverse momentum $p_{\rm T}$ using two observables, to search for evidence of $p_{\rm T}$-dependent flow vector fluctuations. For Pb-Pb collisions at 2.76 TeV, the measurements indicate that $p_{\rm T}$-dependent fluctuations are only present for the second order flow vector. Similar results hav…

HEAVY-ION COLLISIONSnucl-extransverse momentum dependenceCOLLABORATIONangular correlation [charged particle]High Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)ALICEmodel: hydrodynamicstransport theory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear ExperimentNuclear ExperimentMonte CarloHeavy Ion Experiments; RELATIVISTIC NUCLEAR COLLISIONS; HEAVY-ION COLLISIONS; QUARK-GLUON; PLASMA; COLLECTIVE FLOW; COLLABORATIONPLASMAfluctuation [geometry]flow: anisotropygeometry: fluctuationQUARK-GLUONCERN LHC CollHeavy Ion Experiments; Nuclear and High Energy PhysicsflowRELATIVISTIC NUCLEAR COLLISIONSHeavy Ion ExperimentQuark-Gluon PlasmaParticle Physics - Experiment2760 GeV/nucleon5020 GeV/nucleonNuclear and High Energy PhysicsCERN LabCOLLECTIVE FLOWFOS: Physical sciencestransverse momentum[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]vector [fluctuation]Heavy Ion Experimentsscattering [heavy ion][ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]factorizationlcsh:Nuclear and particle physics. Atomic energy. Radioactivityddc:530hydrodynamics [model]Nuclear Physics - Experimentnumerical calculationsinitial stateleadHeavy Ion Experiments Nuclear and High Energy Physics.hep-exboundary conditionrapiditycorrelationviscositylcsh:QC770-798High Energy Physics::Experimentp nucleusentropy: densitycharged particle: angular correlationexperimental results
researchProduct

Harmonic decomposition of two particle angular correlations in Pb–Pb collisions at sNN=2.76 TeV

2012

Angular correlations between unidentified charged trigger (t) and associated (a) particles are measured by the ALICE experiment in Pb-Pb collisions at root s(NN) = 2.76 TeV for transverse momenta 0.25 p(T)(a). The shapes of the pair correlation distributions are studied in a variety of collision centrality classes between 0 and 50% of the total hadronic cross section for particles in the pseudorapidity interval |eta| 0.8, and are referred to as "long-range correlations". Fourier components V-n Delta equivalent to are extracted from the long-range azimuthal correlation functions. If particle pairs are correlated to one another through their individual correlation to a common symmetry plane, …

PhysicsNuclear and High Energy Physics010308 nuclear & particles physicsHadronElementary particle01 natural sciencesDecompositionDistribution (mathematics)Correlation functionPseudorapidity0103 physical sciencesHarmonicParticleAtomic physicsNuclear Experiment010306 general physicsPhysics Letters B
researchProduct

First measurement of the |t|-dependence of coherent J/ψ photonuclear production

2021

The first measurement of the dependence on $|t|$, the square of the momentum transferred between the incoming and outgoing target nucleus, of coherent J/ψ photoproduction is presented. The data were measured with the ALICE detector in ultra-peripheral Pb-Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}} = 5.02$ TeV with the J/$\psi$ produced in the central rapidity region $|y| < 0.8$, which corresponds to the small Bjorken-$x$ range $(0.3 − 1.4) \times 10 ^{−3}$. The measured $|t|$-dependence is not described by computations based only on the Pb nuclear form factor, while the photonuclear cross section is better reproduced by models including shadowing according t…

heavy ion: scatteringnucleon: pairVDP::Matematikk og Naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431nucl-ex01 natural sciencesSquare (algebra)ALICEJ/psi(3100): photoproduction[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear ExperimentQuantum chromodynamicsPhysicsPhysicsForm factor (quantum field theory)ultra-peripheral collisionsdependence [impact parameter]J/psi ALICE Pb-Pb collisionsBalitsky-Kovchegov equationQuarkoniumddc:3. Good healthPHOTOPRODUCTIONshadowingNucleonParticle Physics - ExperimentPB-PB COLLISIONSNuclear and High Energy PhysicsQC1-999nucleus: form factor[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]MomentumNuclear physicsPHYSICSCross section (physics)heavy-ion collisions ultra-peripheral collisions quarkoniaphotoproduction [J/psi(3100)]scattering [heavy ion]0103 physical sciencesNuclear Physics - Experimentddc:530Rapidity5020 GeV-cms/nucleonHeavy Ion experiments010306 general physicsimpact parameter: dependencehep-ex010308 nuclear & particles physicsnucleus: targetpair [nucleon]photonuclear productionheavy-ion collisionsquarkoniaform factor [nucleus]PB-PB COLLISIONS; PHOTOPRODUCTION; PHYSICStarget [nucleus]J/PsicoherenceJ/psi(3100): photoproduction ; impact parameter: dependence ; nucleus: form factor ; nucleus: target ; nucleon: pair ; heavy ion: scattering ; coherence ; Balitsky-Kovchegov equation ; shadowing ; rapidity ; ALICE ; experimental results ; 5020 GeV-cms/nucleonrapidityphotonuclear production J/Psi Pb-Pb collisionsHigh Energy Physics::Experimentexperimental results
researchProduct

Pseudorapidity and transverse-momentum distributions of charged particles in proton–proton collisions at s=13 TeV

2016

The pseudorapidity (η) and transverse-momentum (pT) distributions of charged particles produced in proton-proton collisions are measured at the centre-of-mass energy s√ = 13 TeV. The pseudorapidity distribution in |η|< 1.8 is reported for inelastic events and for events with at least one charged particle in | η|< 1. The pseudorapidity density of charged particles produced in the pseudorapidity region |η|< 0.5 is 5.31 ± 0.18 and 6.46 ± 0.19 for the two event classes, respectively. The transverse-momentum distribution of charged particles is measured in the range 0.15 < pT < 20 GeV/c and |η|< 0.8 for events with at least one charged particle in |η|< 1. The correlation between transverse momen…

PhysicsNuclear and High Energy PhysicsParticle physicsTime projection chamber010308 nuclear & particles physicsHadronPartonStrangeness01 natural sciences7. Clean energyCharged particleHadronizationNuclear physicsPseudorapidity0103 physical sciencesHigh Energy Physics::ExperimentMultiplicity (chemistry)Nuclear Experiment010306 general physicsPhysics Letters B
researchProduct

Real-time data processing in the ALICE High Level Trigger at the LHC

2019

At the Large Hadron Collider at CERN in Geneva, Switzerland, atomic nuclei are collided at ultra-relativistic energies. Many final-state particles are produced in each collision and their properties are measured by the ALICE detector. The detector signals induced by the produced particles are digitized leading to data rates that are in excess of 48 GB/$s$. The ALICE High Level Trigger (HLT) system pioneered the use of FPGA- and GPU-based algorithms to reconstruct charged-particle trajectories and reduce the data size in real time. The results of the reconstruction of the collision events, available online, are used for high level data quality and detector-performance monitoring and real-tim…

calibration ; ALICE ; trigger ; monitoring ; quality ; data management ; programming ; FPGA ; multiprocessor: graphics ; performancePhysics - Instrumentation and DetectorsHigh level triggerPhysics::Instrumentation and DetectorsLevel datatutkimuslaitteetFPGA; GPUDetector calibrationGPUFOS: Physical sciencesGeneral Physics and AstronomyhiukkasfysiikkaPhysics and Astronomy(all)01 natural sciencesprogramming010305 fluids & plasmasCombinatoricsALICE0103 physical sciencesmultiprocessor: graphics[INFO]Computer Science [cs][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Detectors and Experimental Techniques010306 general physicsNuclear Experimentphysics.ins-detFPGAcomputer.programming_languagePhysicsLarge Hadron ColliderFPGA; GPU; TRACKsignaalinkäsittelyInstrumentation and Detectors (physics.ins-det)triggercalibrationmonitoringdatailmaisimetqualityHardware and ArchitectureTRACKHigh Energy Physics::Experimentdata managementAlice (programming language)computerperformance
researchProduct

Search for a common baryon source in high-multiplicity pp collisions at the LHC

2020

Physics letters / B B811, 135849 (2020). doi:10.1016/j.physletb.2020.135849

:Kjerne- og elementærpartikkelfysikk: 431 [VDP]HadronHadron - hadron reactionHEAVY-ION COLLISIONSHigh multiplicityhiukkasfysiikkanucl-exdecay [resonance]01 natural sciencesHigh Energy Physics - ExperimentExperimentHigh Energy Physics - Experiment (hep-ex)hadron–hadron interactions LHC ALICEBarions; strong interaction; LHCALICEstrong resonance decayIonic Collisionsscattering [p p][PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)Nuclear ExperimentNuclear ExperimentBarionsPION INTERFEROMETRYhadron-hadron scatteringPhysicsLarge Hadron ColliderMesonsHadron - hadron reactionsmass: transversestrong interactionPhysicsbaryon correlations ; invariant radius ; strong hadron–hadron interactions ; strong resonance decayVDP::Kjerne- og elementærpartikkelfysikk: 431RadiusAU+AUInvariant (physics)lcsh:QC1-999quark gluon plasmaPRIRODNE ZNANOSTI. Fizika.HEAVY-ION COLLISIONS; PION INTERFEROMETRY; SIGMA(0) PRODUCTION; AU+AU; COLLISIONS; FEMTOSCOPY; SYSTEMS; PB:Nuclear and elementary particle physics: 431 [VDP]CERN LHC CollVDP::Nuclear and elementary particle physics: 431Transverse massLHCPBParticle Physics - Experimentbaryon correlationsCOLLISIONSNuclear and High Energy Physicsp p: scatteringHigh Energy Physics; ExperimentcollectiveFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]530114 Physical sciencesNuclear physicsHadron - hadron reactions; LHCbaryon baryon: correlationSYSTEMSresonance: decay0103 physical sciencesfemtoscopyddc:530Nuclear Physics - ExperimentHigh Energy Physics010306 general physicshadron hadron: interactioninteraction [hadron hadron]010308 nuclear & particles physicshep-exhadron-hadron scattering ALICE experiment femtoscopySIGMA(0) PRODUCTIONHigh Energy Physics::PhenomenologyALICE experimentcorrelation [baryon baryon]Kaonsstrong hadron–hadron interactionsNATURAL SCIENCES. Physics.invariant radiusBaryonKaons; Ionic Collisions; Mesonstransverse [mass]Antiproton13000 GeV-cms/nucleonHigh Energy Physics::Experimentlcsh:Physicsexperimental results
researchProduct

Charged jet cross sections and properties in proton-proton collisions at $\sqrt{s}=7$ TeV

2015

The differential charged jet cross sections, jet fragmentation distributions, and jet shapes are measured in minimum bias proton-proton collisions at centre-of-mass energy $\sqrt{s}=7$ TeV using the ALICE detector at the LHC. Jets are reconstructed from charged particle momenta in the mid-rapidity region using the sequential recombination $k_{\rm T}$ and anti-$k_{\rm T}$ as well as the SISCone jet finding algorithms with several resolution parameters in the range $R=0.2$ to $0.6$. Differential jet production cross sections measured with the three jet finders are in agreement in the transverse momentum ($p_{\rm T}$) interval $20<p_{\rm T}^{\rm jet,ch}<100$ GeV/$c$. They are also consistent w…

shapes:Kjerne- og elementærpartikkelfysikk: 431 [VDP]parton distributionsMonte Carlo methodP(P)OVER-BAR COLLISIONSALICE Charged jet proton-proton 7 TeVATLAS DETECTOR01 natural sciencesSpectral lineHigh Energy Physics - Experimentdifferential charged jet cross sectionENERGYHigh Energy Physics - Experiment (hep-ex)ALICEFragmentation (mass spectrometry)Nuclear and High Energy Physics differential charged jet cross sectionfragmentation[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)ROOT-S(NN)=2.76 TEVNuclear ExperimentNuclear Experimentroot-s(nn)=2.76 tevatlas detectorPhysicsLarge Hadron Collidercross sectionPhysicsDetectorCharged particle3. Good health:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]charged jetsPRIRODNE ZNANOSTI. Fizika.:Nuclear and elementary particle physics: 431 [VDP]SHAPESTransverse momentumHADRON-COLLISIONSFRAGMENTATIONpp collisionsenergyParticle physicsNuclear and High Energy PhysicsAstrophysics::High Energy Astrophysical PhenomenaCharged jetVDP::Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431FOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]114 Physical sciencestransverse-momentumNuclear physicsMinimum bias(P)OVER-BAR-P COLLISIONS P(P)OVER-BAR COLLISIONS PP COLLISIONS PARTON DISTRIBUTIONS TRANSVERSE-MOMENTUM SHAPES ALGORITHM ENERGY0103 physical sciences7 TeVNuclear Physics - Experimentproton-protonALGORITHM010306 general physics(p)over-bar-p collisionsPP COLLISIONSta114(P)OVER-BAR-P COLLISIONSVDP::Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431010308 nuclear & particles physics:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]TRANSVERSE-MOMENTUMNATURAL SCIENCES. Physics.(p)over-bar-p collisions ; parton distributions ; transverse-momentum ; root-s(nn)=2.76 tev ; hadron-collisions ; atlas detector ; pp collisions ; fragmentation ; shapes ; energy ; charged jet ; cross section ; proton-proton ; 7 TeVhadron-collisionsPARTON DISTRIBUTIONSALICE; Charged jet; proton-proton; 7 TeVproton-proton collisionsHigh Energy Physics::Experimentcharged jet
researchProduct

Early outcomes and complications following cardiac surgery in patients testing positive for coronavirus disease 2019: An international cohort study

2021

The outbreak of severe acute respiratory syndromecoronavirus-2, the cause of coronavirus disease 2019 (COVID-19) in December 2019 represented a global emergency accounting for more than 2.5 million deaths worldwide.1 It has had an unprecedented influence on cardiac surgery internationally, resulting in cautious delivery of surgery and restructuring of services.2 Understanding the influence of COVID-19 on patients after cardiac surgery is based on assumptions from other surgical specialties and single-center studies. The COVIDSurg Collaborative conducted a multicenter cohort study, including 1128 patients, across 235 hospitals, from 24 countries demonstrating perioperative COVID-19 infection…

Pulmonary and Respiratory MedicineMale2019-20 coronavirus outbreakmedicine.medical_specialtyCoronavirus disease 2019 (COVID-19)Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)complication.ArticleNOCohort Studiesoutcomes; complications; following cardiac surgery; coronavirus disease 2019Postoperative ComplicationsCardiovascular Diseases; Cohort Studies; Female; Humans; Male; Middle Aged; SARS-CoV-2; COVID-19; Cardiac Surgical Procedures; Postoperative ComplicationsInternal medicineCardiovascular DiseasemedicineCardiac Surgical ProcedureHumansIn patientCardiac Surgical ProceduresLS7_4business.industrySARS-CoV-2COVID-19Middle AgedCardiac surgeryCardiovascular DiseasesoutcomeSurgeryFemaleCohort StudieCardiology and Cardiovascular Medicinebusinesscardiac surgery[SDV.MHEP]Life Sciences [q-bio]/Human health and pathologyCohort studyHuman
researchProduct

Dielectron production in proton-proton and proton-lead collisions at √sNN=5.02TeV

2020

The first measurements of dielectron production at midrapidity (|ηe| &lt; 0.8) in proton–proton and proton–lead collisions at √sNN = 5.02 TeV at the LHC are presented. The dielectron cross section is measured with the ALICE detector as a function of the invariant mass mee and the pair transverse momentum pT, ee in the ranges mee &lt; 3.5 GeV/c2 and pT, ee &lt; 8 GeV/c, in both collision systems. In proton–proton collisions, the charm and beauty cross sections are determined at midrapidity from a fit to the data with two different event generators. This complements the existing dielectron measurements performed at √s = 7 and 13 TeV. The slope of the √s dependence of the three measurements is…

Nuclear and High Energy Physics:Kjerne- og elementærpartikkelfysikk: 431 [VDP]ProtonHadronNuclear Theorydielectrondielectron production01 natural sciences7. Clean energyNuclear physicshadron-ion interactionshadron-hadron collisions; dielectron production;Ionic Collisionsdielectron cross sectiondielectron nuclear modification factor0103 physical sciencesInvariant massDielectronCharm (quantum number)Dielectron; hadron-hadron interactions; hadron-ion interactionsPhysics::Atomic PhysicsIonic Collisions; Relativistic Heavy-ion Collisions; Quark-Gluon Plasma010306 general physicsNuclear ExperimentQuantum chromodynamicsPhysicsLarge Hadron Collider010308 nuclear & particles physicsPhysicsVDP::Kjerne- og elementærpartikkelfysikk: 431hadron-hadron interactionNuclear matterhadron-hadron collisionsNATURAL SCIENCES. Physics.ALICE LHC proton-lead collisions proton-proton collisionsPRIRODNE ZNANOSTI. Fizika.:Nuclear and elementary particle physics: 431 [VDP]VDP::Nuclear and elementary particle physics: 431dielectron ; LHC ; dielectron cross section ; dielectron nuclear modification factorQuark–gluon plasmaQuark-Gluon PlasmaHigh Energy Physics::ExperimentLHChadron-hadron interactionsRelativistic Heavy-ion Collisions
researchProduct

Measurement of pion, kaon and proton production in proton–proton collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym…

2015

The measurement of primary \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi ^{\pm }$$\end{document}π±, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K^{\pm }$$\end{document}K±, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrs…

Regular Article - Experimental PhysicsThe European Physical Journal. C, Particles and Fields
researchProduct

Measurement of thett¯production cross section inpp¯collisions ats=1.96  TeVusing soft electronb-tagging

2010

The authors present a measurement of the t{bar t} production cross section using events with one charged lepton and jets from p{bar p} collisions at a center-of-mass energy of 1.96 TeV. A b-tagging algorithm based on the probability of displaced tracks coming from the event interaction vertex is applied to identify b quarks from top decay. Using 318 pb{sup -1} of data collected with the CDF II detector, they measure the t{bar t} production cross section in events with at least one restrictive (tight) b-tagged jet and obtain 8.9{sub -1.0}{sup +1.0}(stat.){sub -1.0}{sup +1.1}(syst.) pb. The cross section value assumes a top quark mass of m{sub t} is presented in the paper. This result is cons…

Top quarkCollider physicsHadronTevatronGeneral Physics and AstronomyElementary particleKinematicsElectronJet (particle physics)01 natural sciences7. Clean energyParticle identificationlaw.inventionlawInvariant massFermilabNuclear ExperimentQuantum chromodynamicsPhysicsLarge Hadron ColliderLuminosity (scattering theory)Supersymmetryb-taggingHadronizationTransverse planeProduction (computer science)Collider Detector at FermilabQuarkSemileptonic decayNuclear and High Energy PhysicsParticle physicsBar (music)Astrophysics::High Energy Astrophysical PhenomenaBottom quarkMeasure (mathematics)Standard ModelNuclear physicsCross section (physics)Particle decay0103 physical sciencesCollider010306 general physicsCompact Muon SolenoidMuonBranching fraction010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyMultiplicity (mathematics)FermionVertex (geometry)Pair productionHigh Energy Physics::ExperimentEnergy (signal processing)Bar (unit)LeptonPhysical Review D
researchProduct

Kaon femtoscopy in Pb-Pb collisions at √sNN=2.76 TeV

2017

We present the results of three-dimensional femtoscopic analyses for charged and neutral kaons recorded by ALICE in Pb-Pb collisions at √ s NN = 2.76 TeV. Femtoscopy is used to measure the space-time characteristics of particle production from the effects of quantum statistics and final-state interactions in two-particle correlations. Kaon femtoscopy is an important supplement to that of pions because it allows one to distinguish between different model scenarios working equally well for pions. In particular, we compare the measured three-dimensional kaon radii with a purely hydrodynamical calculation and a model where the hydrodynamic phase is followed by a hadronic rescattering stage. The…

:Kjerne- og elementærpartikkelfysikk: 431 [VDP]Pb-PbHadronNuclear TheoryPb-Pb collisionshiukkasfysiikkaHEAVY-ION COLLISIONSPPCOLLABORATION7. Clean energy01 natural sciencesParticle identificationHYDRODYNAMICSALICEDEPENDENCENuclear ExperimentPhysicsCOULOMB CORRECTIONSTime projection chamberLarge Hadron ColliderVDP::Kjerne- og elementærpartikkelfysikk: 431PRIRODNE ZNANOSTI. Fizika.:Nuclear and elementary particle physics: 431 [VDP]VDP::Nuclear and elementary particle physics: 431BOSE-EINSTEIN CORRELATIONSTransverse massLHCkaonParticle physicsNuclear and High Energy PhysicskaonsNuclear physicsINTERFEROMETRYPionfemtoscopy0103 physical sciencesNuclear and High Energy Physics; ALICE; LHCPARTICLESparticle physics010306 general physicsScalingNuclear and High Energy Physicta114010308 nuclear & particles physics2.76TeVHEAVY-ION COLLISIONS; BOSE-EINSTEIN CORRELATIONS; COULOMB CORRECTIONS; INTERFEROMETRY; MATTER; PP; COLLABORATION; HYDRODYNAMICS; DEPENDENCE; PARTICLESBose–Einstein correlationsNATURAL SCIENCES. Physics.High Energy Physics::ExperimentMATTERkaon femtoscopy Pb-Pb 2.76TeV
researchProduct

Precision measurement of the mass difference between light nuclei and anti-nuclei

2015

The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons. The extension of such measurement from (anti-)baryons to (anti-)nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-)nuclei masses. This force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons and anti-deuterons, and $^{3}{\rm He}$ and $^3\overline{\rm He}…

electronQuarkspectroscopyAntiparticleParticle physicsPhysics of Elementary Particles and FieldsCPT symmetryStrong interactionNuclear TheoryantunucleiFOS: Physical sciencesAntiprotonGeneral Physics and Astronomy[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]ElectronHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Physics and Astronomy (all)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Physics - ExperimentNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear ExperimentAntihydrogenSpectroscopyNuclear Physicsantihydrogenmass measurementQuantum chromodynamicsPhysicsanti-nucleita114SPECTROSCOPY; ANTIHYDROGEN; ANTIPROTON; ELECTRONmass difference nuclei antunucleiHigh Energy Physics::Phenomenologymass differenceNATURAL SCIENCES. Physics.3. Good healthGluonPRIRODNE ZNANOSTI. Fizika.antiprotonnucleiQuark–gluon plasmamassmass difference ; nuclei ; anti-nuclei ; ALICE ; CERNHigh Energy Physics::ExperimentNucleon
researchProduct

Study of cosmic ray events with high muon multiplicity using the ALICE detector at the CERN Large Hadron Collider

2016

ALICE is one of four large experiments at the CERN Large Hadron Collider near Geneva, specially designed to study particle production in ultra-relativistic heavy-ion collisions. Located 52 meters underground with 28 meters of overburden rock, it has also been used to detect muons produced by cosmic ray interactions in the upper atmosphere. In this paper, we present the multiplicity distribution of these atmospheric muons and its comparison with Monte Carlo simulations. This analysis exploits the large size and excellent tracking capability of the ALICE Time Projection Chamber. A special emphasis is given to the study of high multiplicity events containing more than 100 reconstructed muons a…

:Kjerne- og elementærpartikkelfysikk: 431 [VDP]Physics::Instrumentation and Detectorshigh muon multiplicity01 natural sciences7. Clean energyHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)ALICECERN[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)Nuclear Experimentcosmic rayPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Large Hadron ColliderDetectorVDP::Kjerne- og elementærpartikkelfysikk: 431ENERGY-SPECTRUMPRIRODNE ZNANOSTI. Fizika.:Nuclear and elementary particle physics: 431 [VDP]VDP::Nuclear and elementary particle physics: 431ComputingMethodologies_DOCUMENTANDTEXTPROCESSINGcosmic rays detectorsAstrophysics - High Energy Astrophysical PhenomenaAstrophysics and Astronomy[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]FOS: Physical sciencescosmic ray experimentCosmic ray[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]EXTENSIVE AIR-SHOWERScosmic ray ; high muon multiplicity ; ALICE ; CERNBUNDLES114 Physical sciencesREGIONNuclear physicsALICE detectorcosmic rays0103 physical sciencesMultiplicity (chemistry)cosmic rays detector010306 general physicsatmospheric muonsMuon010308 nuclear & particles physicscosmic ray experiments; cosmic rays detectors;EXTENSIVE AIR-SHOWERS; ENERGY-SPECTRUM; BUNDLES; REGION; LEPAstronomy and AstrophysicsLEP115 Astronomy Space scienceNATURAL SCIENCES. Physics.13. Climate actioncosmic ray experiments; cosmic rays detectors; Astronomy and AstrophysicsHigh Energy Physics::Experimentcosmic ray experiments
researchProduct

Centrality and pseudorapidity dependence of the charged-particle multiplicity density in Xe–Xe collisions at sNN=5.44TeV

2019

In this Letter, the ALICE Collaboration presents the first measurements of the charged-particle multiplicity density, dNch/dη, and total charged-particle multiplicity, Nchtot, in Xe–Xe collisions at a centre-of-mass energy per nucleon–nucleon pair of sNN=5.44TeV. The measurements are performed as a function of collision centrality over a wide pseudorapidity range of −3.5&lt;η&lt;5. The values of dNch/dη at mid-rapidity and Nchtot for central collisions, normalised to the number of nucleons participating in the collision (Npart) as a function of sNN follow the trends established in previous heavy-ion measurements. The same quantities are also found to increase as a function of Npart, and up …

Quantum chromodynamicsPhysicsNuclear and High Energy Physics010308 nuclear & particles physicsMultiplicity (mathematics)01 natural sciencesCharged particleNuclear physicsPseudorapidity0103 physical sciencesQuark–gluon plasmaRapidityImpact parameterNuclear Experiment010306 general physicsNucleonPhysics Letters B
researchProduct

Beauty production in pp collisions at s=2.76 TeV measured via semi-electronic decays

2014

The ALICE Collaboration at the LHC reports measurement of the inclusive production cross section of electrons from semi-leptonic decays of beauty hadrons with rapidity |y|<0.8 and transverse momentum 1<pT<10 GeV/c, in pp collisions at s=2.76 TeV. Electrons not originating from semi-electronic decay of beauty hadrons are suppressed using the impact parameter of the corresponding tracks. The production cross section of beauty decay electrons is compared to the result obtained with an alternative method which uses the distribution of the azimuthal angle between heavy-flavour decay electrons and charged hadrons. Perturbative QCD predictions agree with the measured cross section within the exper…

PhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron Collider010308 nuclear & particles physicsHadronPerturbative QCDElectron01 natural sciences7. Clean energyNuclear physicsPhase space0103 physical sciencesQuark–gluon plasmaHigh Energy Physics::ExperimentRapidityImpact parameterNuclear Experiment010306 general physicsPhysics Letters B
researchProduct

Measurement of dielectron production in central Pb-Pb collisions at √sNN = 2.76 TeV

2019

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. The first measurement of dielectron (e + e −) production in central (0 – 10 %) Pb – Pb collisions at √sNN=2.76TeV at the LHC is presented. The dielectron invariant-mass spectrum is compared to the expected contributions from hadron decays in the invariant-mass range 0 < mee < 3.5 GeV / c2. The ratio of data and the cocktail of hadronic contributions without vacuum ρ0 is measured in the invariant-mass range 0.15 < mee < 0.7 GeV / c2, w…

virtual [photon]:Kjerne- og elementærpartikkelfysikk: 431 [VDP]heavy ion collisionsHadrondielectron productionhiukkasfysiikkaPP01 natural sciencesS-W INTERACTIONSthermalALICEPhysics::Atomic PhysicsNuclear ExperimentBrookhaven RHIC CollPhysicsAU COLLISIONSLarge Hadron Colliderphoton: virtual ; photon: direct production ; heavy ion: scattering ; hadron: decay ; Brookhaven RHIC Coll ; transverse momentum ; CERN LHC Coll ; thermal ; ALICE ; mesonVDP::Kjerne- og elementærpartikkelfysikk: 431DIRECT PHOTON PRODUCTIONddc::Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]PRIRODNE ZNANOSTI. Fizika.:Nuclear and elementary particle physics: 431 [VDP]CERN LHC CollVDP::Nuclear and elementary particle physics: 431Transverse momentumNuclear and High Energy PhysicsRho mesondirect production [photon]MesonPAIR PRODUCTIONPhoton lepton & quark productiontransverse momentumFew-body systemsmesonNuclear physicsDIRECT PHOTON PRODUCTION; S-W INTERACTIONS; AU COLLISIONS; RHO-MESON; DIMUON PRODUCTION; PAIR PRODUCTION; PP; J/PSI; ENHANCEMENT; EMISSIONENHANCEMENTscattering [heavy ion]0103 physical sciencesRelativistic heavy-ion collisionsRHO-MESON010306 general physicsParticle & resonance productionNuclear Physicsta114010308 nuclear & particles physics:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]NATURAL SCIENCES. Physics.J/PSIPair productionDIMUON PRODUCTIONQuark–gluon plasmaHigh Energy Physics::ExperimentEMISSIONdecay [hadron]
researchProduct

Elliptic Flow in Pb-Pb Collisions at

2017

We report a precise measurement of the J/ψ elliptic flow in Pb-Pb collisions at sNN=5.02  TeV with the ALICE detector at the LHC. The J/ψ mesons are reconstructed at midrapidity (|y|<0.9) in the dielectron decay channel and at forward rapidity (2.5<y<4.0) in the dimuon channel, both down to zero transverse momentum. At forward rapidity, the elliptic flow v2 of the J/ψ is studied as a function of the transverse momentum and centrality. A positive v2 is observed in the transverse momentum range 2<pT<8  GeV/c in the three centrality classes studied and confirms with higher statistics our earlier results at sNN=2.76  TeV in semicentral collisions. At midrapidity, the J/ψ  v2 is investigated as …

QuarkPhysicsMeson010308 nuclear & particles physicsElliptic flowGeneral Physics and AstronomyQuarkonium01 natural sciencesCharm quarkNuclear physicsMomentum0103 physical sciencesQuark–gluon plasmaHigh Energy Physics::ExperimentRapidityNuclear Experiment010306 general physics
researchProduct

Measurement of quarkonium production at forward rapidity in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfo…

2014

The inclusive production cross sections at forward rapidity of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{J}/\psi }$$\end{document}J/ψ, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\psi (\mathrm{2S})}$$\end{document}ψ(2S), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} …

Regular Article - Experimental PhysicsThe European Physical Journal. C, Particles and Fields
researchProduct

Measurement of Z 0 -boson production at large rapidities in Pb–Pb collisions at

2018

The production of Z0 bosons at large rapidities in Pb–Pb collisions at √sNN=5.02TeV is reported. Z0 candidates are reconstructed in the dimuon decay channel (Z0→μ+μ−), based on muons selected with pseudo-rapidity −4.0 20GeV/c. The invariant yield and the nuclear modification factor, RAA, are presented as a function of rapidity and collision centrality. The value of RAA for the 0–20% central Pb–Pb collisions is 0.67±0.11(stat.)±0.03(syst.)±0.06(corr. syst.), exhibiting a deviation of 2.6σ from unity. The results are well-described by calculations that include nuclear modifications of the parton distribution functions, while the predictions using vacuum PDFs deviate from data by 2.3σ in the 0…

Nuclear reactionPhysicsNuclear and High Energy PhysicsLarge Hadron ColliderMuon010308 nuclear & particles physicsParton01 natural scienceslaw.inventionNuclear physicslaw0103 physical sciencesRapidityImpact parameter010306 general physicsColliderBoson
researchProduct

Performance of the ALICE VZERO system

2013

ALICE is an LHC experiment devoted to the study of strongly interacting matter in proton-proton, proton--nucleus and nucleus-nucleus collisions at ultra-relativistic energies. The ALICE VZERO system, made of two scintillator arrays at asymmetric positions, one on each side of the interaction point, plays a central role in ALICE. In addition to its core function as a trigger, the VZERO system is used to monitor LHC beam conditions, to reject beam-induced backgrounds and to measure basic physics quantities such as luminosity, particle multiplicity, centrality and event plane direction in nucleus-nucleus collisions. After describing the VZERO system, this publication presents its performance o…

Particle physicsPhysics::Instrumentation and DetectorsLarge detector-systems performance Trigger detectors Large detector systems for particle and astroparticle physics Heavy-ion detectorsmedia_common.quotation_subjectHeavy-ion detectorsNuclear Theorylarge detector-systems performanceFOS: Physical sciencesVZERO detectorlarge detector systems for particle and astroparticle physicsScintillator[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesAsymmetrytrigger detectors; large detector systems for particle and astroparticle physics; heavy-ion detectors; large detector-systems performancetrigger detectorsNuclear physics0103 physical sciencesALICE; trigger; V0NUCLEAR COLLISIONSNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentInstrumentationNuclear ExperimentV0 DETECTORMathematical PhysicsCore functionLarge detector-systems performance; Trigger detectors; Large detector systems for particle and astroparticle physics; Heavy-ion detectors; V0 DETECTOR; NUCLEAR COLLISIONSTrigger detectormedia_commonLarge detector-systems performancePhysicsLarge Hadron ColliderInteraction pointLarge detector systems for particle and astroparticle physics010308 nuclear & particles physicsALICE experimentTrigger detectorsLarge detector systems for particle and astroparticle physicheavy-ion detectorsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGCentralityLarge detector-systems performance; Trigger detectors; Large detector systems for particle and astroparticle physics; Heavy-ion detectorsParticle Physics - Experiment
researchProduct

Machine learning risk prediction of mortality for patients undergoing surgery with perioperative SARS-CoV-2: the COVIDSurg mortality score

2021

The British journal of surgery 108(11), 1274-1292 (2021). doi:10.1093/bjs/znab183

Cuidado perioperatorioAcademicSubjects/MED00910Settore MED/18 - CHIRURGIA GENERALEMedizinpulmonary complicationspreoperative screeningDatasets as TopicSurgical Procedures Operative/mortality030230 surgeryperioperative care ; surgical procedures ; operative mortality ; machine learning ; sars-cov-2Medical and Health SciencesProcediments quirúrgicsCohort StudiesMachine LearningTumours of the digestive tract Radboud Institute for Health Sciences [Radboudumc 14]0302 clinical medicineModelsProcedimientos quirúrgicosMedicine and Health SciencesCOVIDSurg Collaborative Co-authorsMedicine030212 general & internal medicineskin and connective tissue diseasesRapid Research Communication11 Medical and Health SciencesOperative/mortalitySARS-CoV-19COVID-19/mortalityStatisticalCOVID-19/mortality; Cohort Studies; Datasets as Topic; Humans; Machine Learning; Models Statistical; Risk Assessment; SARS-CoV-2; Surgical Procedures Operative/mortalityCOVID-19; Cohort Studies; Datasets as Topic; Humans; Machine Learning; SARS-CoV-2; Surgical Procedures Operative; Models Statistical; Risk AssessmentAprendizaje automáticoOperativeSurgical Procedures OperativeoutcomeOperativo[SDV.IB]Life Sciences [q-bio]/BioengineeringPatient SafetyAcademicSubjects/MED000106.4 SurgeryLife Sciences & BiomedicineHuman61medicine.medical_specialty616.9Coronavirus disease 2019 (COVID-19)Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-.Risk AssessmentNOCOVIDSurg CollaborativeVaccine Related03 medical and health sciencesClinical ResearchBiodefenseCures perioperatòriesAprenentatge automàticMortalitatHumansOperatiusLS7_4Surgical ProceduresScience & TechnologyModels Statisticalbusiness.industrySARS-CoV-2SARS-CoV-2 infectionKirurgiPreventionnot indicatedcovid 19fungiEvaluation of treatments and therapeutic interventionsCOVID-19Perioperativecovid 19; pulmonary complications; postoperative mortality risk; SARS-CoV-2 infection; preoperative screening; vaccinationvaccinationmortalityGood Health and Well BeingMortalidadEmergency medicineSurgeryHuman medicineCohort Studiebusinesspostoperative mortality riskPerioperative care
researchProduct

Measurements of mixed harmonic cumulants in Pb–Pb collisions at sNN=5.02 TeV

2021

Correlations between moments of different flow coefficients are measured in Pb–Pb collisions at sNN=5.02 TeV recorded with the ALICE detector. These new measurements are based on multiparticle mixed harmonic cumulants calculated using charged particles in the pseudorapidity region |η|&lt;0.8 with the transverse momentum range 0.2&lt;pT&lt;5.0 GeV/c. The centrality dependence of correlations between two flow coefficients as well as the correlations between three flow coefficients, both in terms of their second moments, are shown. In addition, a collection of mixed harmonic cumulants involving higher moments of v2 and v3 is measured for the first time, where the characteristic signature of ne…

Quantum chromodynamicsPhysicsNuclear and High Energy PhysicsLarge Hadron Collider010308 nuclear & particles physics01 natural sciencesCharged particleNuclear physicsPseudorapidity0103 physical sciencesHarmonicRapidity010306 general physicsAnisotropyCumulantPhysics Letters B
researchProduct

Femtosecond exciton dynamics in WSe2 optical waveguides

2020

Van-der Waals (vdW) atomically layered crystals can act as optical waveguides over a broad range of the electromagnetic spectrum ranging from Terahertz to visible. Unlike common Si-based waveguides, vdW semiconductors host strong excitonic resonances that may be controlled using non-thermal stimuli including electrostatic gating and photoexcitation. Here, we utilize waveguide modes to examine photo-induced changes of excitons in the prototypical vdW semiconductor, WSe2, prompted by femtosecond light pulses. Using time-resolved scanning near-field optical microscopy we visualize the electric field profiles of waveguide modes in real space and time and extract the temporal evolution of the op…

Materials scienceTerahertz radiationExcitonScienceGeneral Physics and AstronomyPhysics::Optics02 engineering and technology01 natural sciencesWaveguide (optics)General Biochemistry Genetics and Molecular BiologySettore FIS/03 - Fisica Della Materiasymbols.namesakeCondensed Matter::Materials Science0103 physical sciencesPhysics::Atomic and Molecular Clusters010306 general physicslcsh:ScienceMultidisciplinarybusiness.industryQGeneral Chemistry021001 nanoscience & nanotechnology2D materialsPhotoexcitationSemiconductorStark effectFemtosecondsymbolsOptoelectronicslcsh:Q0210 nano-technologybusinessUltrashort pulseNature Communications
researchProduct

Energy dependence of the transverse momentum distributions of charged particles in pp collisions measured by ALICE

2013

Differential cross sections of charged particles in inelastic pp collisions as a function of $p_{\rm T}$ have been measured at $\sqrt{s}=$ 0.9, 2.76 and 7 TeV at the LHC. The $p_{\rm T}$ spectra are compared to NLO-pQCD calculations. Though the differential cross section for an individual $\sqrt{s}$ cannot be described by NLO-pQCD, the relative increase of cross section with $\sqrt{s}$ is in agreement with NLO-pQCD. Based on these measurements and observations, procedures are discussed to construct pp reference spectra at $\sqrt{s} =$ 2.76 and 5.02 TeV up to $p_{\rm T}$ = 50 GeV/$c$ as required for the calculation of the nuclear modification factor in nucleus-nucleus and proton-nucleus coll…

:Kjerne- og elementærpartikkelfysikk: 431 [VDP]Physics and Astronomy (miscellaneous)heavy ion collisionsNuclear Theory01 natural sciences7. Clean energySpectral lineHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)pp collisionALICEpp collisions; transverse momentum; ALICE[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)transverse momentum distributionNuclear ExperimentNuclear ExperimentPhysicsLarge Hadron Collidertransverse momentum; pp; ALICE; charged particlesPhysicsCharged particle3. Good health:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]:Nuclear and elementary particle physics: 431 [VDP]Transverse momentumLhcDiffractionpp collisionsParticle Physics - ExperimentRegular Article - Experimental PhysicsVDP::Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431particle productionFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]transverse momentumtransverse momentum distribution; PP COLLISIONSNuclear physicsRoot-S(Nn)=2.76 TevCross section (physics)0103 physical sciencesNuclear Physics - ExperimentPb-Pb Collisions010306 general physicsEngineering (miscellaneous)SuppressionALICE experiment; particle production; heavy ion collisionsVDP::Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyTransverse momentum distributions:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]ALICE experimentFunction (mathematics)Proton-Proton Collisionsp-p collisionHigh Energy Physics::ExperimentALICE (propellant)Energy (signal processing)
researchProduct

Measurement of visible cross sections in proton-lead collisions at √sNN= 5.02 TeV in van der Meer scans with the ALICE detector

2014

In 2013, the Large Hadron Collider provided proton-lead and lead-proton collisions at the center-of-mass energy per nucleon pair $\sqrt{s_{\rm{NN}}}=5.02$ TeV. Van der Meer scans were performed for both configurations of colliding beams, and the cross section was measured for two reference processes, based on particle detection by the T0 and V0 detectors, with pseudo-rapidity coverage $4.6<\eta< 4.9$, $-3.3<\eta<-3.0$ and $2.8<\eta< 5.1$, $-3.7<\eta<-1.7$, respectively. Given the asymmetric detector acceptance, the cross section was measured separately for the two configurations. The measured visible cross sections are used to calculate the integrated luminosity of the proton-lead and lead-…

ProtonNuclear Theorylarge detector systems for particle and astroparticle physicsLarge detector systems for particle and astroparticle physics; Particle tracking detec- tors; Heavy-ion detectors01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Particle tracking detectorsparticle tracking detectors[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Neutron detectionNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear ExperimentInstrumentationMathematical PhysicsPhysicsLarge Hadron ColliderLuminosity (scattering theory)PhysicsDetectorLuminosity measurement3. Good healthPRIRODNE ZNANOSTI. Fizika.Large detector systems for particle and astroparticle physics Particle tracking detec- torNucleonParticle Physics - ExperimentLarge detector systems for particle and astroparticle physics ; Particle tracking detectors ; Heavy-ion detectorsParticle physicsParticle tracking detec- torsInstrumentationHeavy-ion detectorsFOS: Physical sciencesLarge detector systems for particle and astroparticle physics; Particle tracking detectors; Heavy-ion detectors[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear physicsCross section (physics)p-Pb collisions at the LHC0103 physical sciencesNuclear Physics - Experiment010306 general physics010308 nuclear & particles physicsLarge detector systems for particle and astroparticle physicsALICE experimentLarge detector systems for particle and astroparticle physics Particle tracking detec- tors; Heavy-ion detectorsNATURAL SCIENCES. Physics.heavy-ion detectorsInstrumentation; Mathematical PhysicsPhysics::Accelerator PhysicsHigh Energy Physics::Experiment
researchProduct