0000000000529484
AUTHOR
P. Fermani
Search for Cosmic Neutrino Point Sources with Four Year Data of the ANTARES Telescope
In this paper, a time-integrated search for point sources of cosmic neutrinos is presented using the data collected from 2007 to 2010 by the ANTARES neutrino telescope. No statistically significant signal has been found and upper limits on the neutrino flux have been obtained. Assuming an E ¿2 n; spectrum, these flux limits are at 1-10 ¿10¿8 GeV cm¿2 s¿1 for declinations ranging from ¿90° to 40°. Limits for specific models of RX J1713.7¿3946 and Vela X, which include information on the source morphology and spectrum, are also given.
First search for point sources of high-energy cosmic neutrinos with the ANTARES neutrino telescope
Results are presented of a search for cosmic sources of high-energy neutrinos with the ANTARES neutrino telescope. The data were collected during 2007 and 2008 using detector configurations containing between 5 and 12 detection lines. The integrated live time of the analyzed data is 304 days. Muon tracks are reconstructed using a likelihood-based algorithm. Studies of the detector timing indicate a median angular resolution of 0.5 0.1deg. The neutrino flux sensitivity is 7.5 ¿ 10 -8(E ¿/ GeV) -2 GeV -1 s -1 cm -2 for the part of the sky that is always visible (¿ < -48deg), which is better than limits obtained by previous experiments. No cosmic neutrino sources have been observed.
Deep sea tests of a prototype of the KM3NeT digital optical module
SIRE(opens in a new window)|View at Publisher| Export | Download | Add to List | More... European Physical Journal C Volume 74, Issue 9, 1 September 2014, 8p Deep sea tests of a prototype of the KM3NeT digital optical module: KM3NeT Collaboration (Article) Adrián-Martínez, S.a, Ageron, M.b, Aharonian, F.c, Aiello, S.d, Albert, A.e, Ameli, F.f, Anassontzis, E.G.g, Anghinolfi, M.h, Anton, G.i, Anvar, S.j, Ardid, M.a, de Asmundis, R.k, Balasi, K.l, Band, H.m, Barbarino, G.kn, Barbarito, E.o, Barbato, F.kn, Baret, B.p, Baron, S.p, Belias, A.lq, Berbee, E.m, van den Berg, A.M.r, Berkien, A.m, Bertin, V.b, Beurthey, S.b, van Beveren, V.m, Beverini, N.st, Biagi, S.uv, Bianucci, S.t, Billault, M.b,…
SEARCHES FOR POINT-LIKE AND EXTENDED NEUTRINO SOURCES CLOSE TO THE GALACTIC CENTER USING THE ANTARES NEUTRINO TELESCOPE
A search for cosmic neutrino sources using six years of data collected by the ANTARES neutrino telescope has been performed. Clusters of muon neutrinos over the expected atmospheric background have been looked for. No clear signal has been found. The most signal-like accumulation of events is located at equatorial coordinates R.A. = -46º.8 and decl. = -64º.9 and corresponds to a 2.2 sigma background fluctuation. In addition, upper limits on the flux normalization of an E-2 muon neutrino energy spectrum have been set for 50 pre-selected astrophysical objects. Finally, motivated by an accumulation of seven events relatively close to the Galactic Center in the recently reported neutrino sample…
A search for time dependent neutrino emission from microquasars with the ANTARES telescope
[EN] Results are presented on a search for neutrino emission from a sample of six microquasars, based on the data collected by the ANTARES neutrino telescope between 2007 and 2010. By means of appropriate time cuts, the neutrino search has been restricted to the periods when the acceleration of relativistic jets was taking place at the microquasars under study. The time cuts have been chosen using the information from the X-ray telescopes RXTE/ASM and Swift/BAT, and, in one case, the gamma-ray telescope Fermi/LAT. No statistically significant excess has been observed, thus upper limits on the neutrino fluences have been derived and compared to the predictions by models. Constraints have bee…
Searches for clustering in the time integrated skymap of the ANTARES neutrino telescope
Adrián-Martínez, S. et al.
Search for relativistic magnetic monopoles with the ANTARES neutrino telescope
Magnetic monopoles are predicted in various unified gauge models and could be produced at intermediate mass scales. Their detection in a neutrino telescope is facilitated by the large amount of light emitted compared to that from muons. This paper reports on a search for upgoing relativistic magnetic monopoles with the ANTARES neutrino telescope using a data set of 116 days of live time taken from December 2007 to December 2008. The one observed event is consistent with the expected atmospheric neutrino and muon background, leading to a 90% C.L. upper limit on the monopole flux between 1.3 ¿ 10¿17 and 8.9 ¿ 10¿17 cm¿2 s¿1 sr¿1 for monopoles with velocity ß ¿ 0.625.
Search for muon neutrinos from gamma-ray bursts with the ANTARES neutrino telescope using 2008 to 2011 data
Aims. We search for muon neutrinos in coincidence with GRBs with the ANTARES neutrino detector using data from the end of 2007 to 2011. Methods. Expected neutrino fluxes were calculated for each burst individually. The most recent numerical calculations of the spectra using the NeuCosmA code were employed, which include Monte Carlo simulations of the full underlying photohadronic interaction processes. The discovery probability for a selection of 296 GRBs in the given period was optimised using an extended maximum-likelihood strategy. Results. No significant excess over background is found in the data, and 90% confidence level upper limits are placed on the total expected flux according to …
Deep sea tests of a prototype of the KM3NeT digital optical module: KM3NeT Collaboration
The first prototype of a photo-detection unit of the future KM3NeT neutrino telescope has been deployed in the deep waters of the Mediterranean Sea. This digital optical module has a novel design with a very large photocathode area segmented by the use of 31 three inch photomultiplier tubes. It has been integrated in the ANTARES detector for in-situ testing and validation. This paper reports on the first months of data taking and rate measurements. The analysis results highlight the capabilities of the new module design in terms of background suppression and signal recognition. The directionality of the optical module enables the recognition of multiple Cherenkov photons from the same $^{40…
A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007
A search for high-energy neutrinos coming from the direction of the Sun has been performed using the data recorded by the ANTARES neutrino telescope during 2007 and 2008. The neutrino selection criteria have been chosen to maximize the selection of possible signals produced by the self-annihilation of weakly interacting massive particles accumulated in the centre of the Sun with respect to the atmospheric background. After data unblinding, the number of neutrinos observed towards the Sun was found to be compatible with background expectations. The 90% CL upper limits in terms of spin-dependent and spin-independent WIMP-proton cross-sections are derived and compared to predictions of two sup…
Constraining the neutrino emission of gravitationally lensed Flat-Spectrum Radio Quasars with ANTARES data
This paper proposes to exploit gravitational lensing effects to improve the sensitivity of neutrino telescopes to the intrinsic neutrino emission of distant blazar populations. This strategy is illustrated with a search for cosmic neutrinos in the direction of four distant and gravitationally lensed Flat-Spectrum Radio Quasars. The magnification factor is estimated for each system assuming a singular isothermal profile for the lens. Based on data collected from 2007 to 2012 by the ANTARES neutrino telescope, the strongest constraint is obtained from the lensed quasar B0218+357, providing a limit on the total neutrino luminosity of this source of 1.08×10^46 erg s-1. This limit is about one o…
Measurement of the atmospheric ?µ energy spectrum from 100 GeV to 200 TeV with the ANTARES telescope
Atmospheric neutrinos are produced during cascades initiated by the interaction of primary cosmic rays with air nuclei. In this paper, a measurement of the atmospheric energy spectrum in the energy range 0.1-200 TeV is presented, using data collected by the ANTARES underwater neutrino telescope from 2008 to 2011. Overall, the measured flux is similar to 25 % higher than predicted by the conventional neutrino flux, and compatible with the measurements reported in ice. The flux is compatible with a single power-law dependence with spectral index gamma (meas)=3.58 +/- 0.12. With the present statistics the contribution of prompt neutrinos cannot be established.