0000000000530293

AUTHOR

Jean-baptiste Féret

0000-0002-0151-1334

showing 2 related works from this author

Retrieval of aboveground crop nitrogen content with a hybrid machine learning method

2020

Abstract Hyperspectral acquisitions have proven to be the most informative Earth observation data source for the estimation of nitrogen (N) content, which is the main limiting nutrient for plant growth and thus agricultural production. In the past, empirical algorithms have been widely employed to retrieve information on this biochemical plant component from canopy reflectance. However, these approaches do not seek for a cause-effect relationship based on physical laws. Moreover, most studies solely relied on the correlation of chlorophyll content with nitrogen, and thus neglected the fact that most N is bound in proteins. Our study presents a hybrid retrieval method using a physically-base…

FOS: Computer and information sciencesComputer Science - Machine LearningHeteroscedasticity010504 meteorology & atmospheric sciencesMean squared errorEnMAP0211 other engineering and technologiesGaussian processes02 engineering and technologyManagement Monitoring Policy and LawQuantitative Biology - Quantitative Methods01 natural sciencesMachine Learning (cs.LG)symbols.namesakeHomoscedasticityEnMAPAgricultural monitoringComputers in Earth SciencesGaussian processQuantitative Methods (q-bio.QM)021101 geological & geomatics engineering0105 earth and related environmental sciencesEarth-Surface ProcessesMathematicsRemote sensing2. Zero hungerGlobal and Planetary ChangeInversionHyperspectral imagingImaging spectroscopyRadiative transfer modelingRegressionImaging spectroscopyFOS: Biological sciences[SDE]Environmental SciencessymbolsInternational Journal of Applied Earth Observation and Geoinformation
researchProduct

Crop nitrogen monitoring: Recent progress and principal developments in the context of imaging spectroscopy missions

2020

Abstract Nitrogen (N) is considered as one of the most important plant macronutrients and proper management of N therefore is a pre-requisite for modern agriculture. Continuous satellite-based monitoring of this key plant trait would help to understand individual crop N use efficiency and thus would enable site-specific N management. Since hyperspectral imaging sensors could provide detailed measurements of spectral signatures corresponding to the optical activity of chemical constituents, they have a theoretical advantage over multi-spectral sensing for the detection of crop N. The current study aims to provide a state-of-the-art overview of crop N retrieval methods from hyperspectral data…

2. Zero hungerSpectral signature010504 meteorology & atmospheric sciencesComputer science0208 environmental biotechnology[SDV.SA.AGRO]Life Sciences [q-bio]/Agricultural sciences/AgronomySoil ScienceHyperspectral imagingGeology02 engineering and technology15. Life on land01 natural sciencesArticleRegression020801 environmental engineeringNonparametric regressionVNIRChemometricsImaging spectroscopyComputers in Earth SciencesComputingMilieux_MISCELLANEOUS0105 earth and related environmental sciencesParametric statisticsRemote sensingRemote Sensing of Environment
researchProduct